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ABSTRACT
While mobile devices have become essential for social com-
munication and have paved the way for work on the go,
their interactive capabilities are still limited to simple touch
input. A promising enhancement for touch interaction is
knuckle input but recognizing knuckle gestures robustly and
accurately remains challenging. We present a method to dif-
ferentiate between 17 finger and knuckle gestures based on
a long short-term memory (LSTM) machine learning model.
Furthermore, we introduce an open source approach that
is ready-to-deploy on commodity touch-based devices. The
model was trained on a new dataset that we collected in a
mobile interaction study with 18 participants. We show that
our method can achieve an accuracy of 86.8% on recognizing
one of the 17 gestures and an accuracy of 94.6% to differen-
tiate between finger and knuckle. In our evaluation study,
we validate our models and found that the LSTM gesture
recognizing archived an accuracy of 88.6%. We show that
KnuckleTouch can be used to improve the input expressive-
ness and to provide shortcuts to frequently used functions.

CCS CONCEPTS
• Human-centered computing → Touch screens; Em-
pirical studies in HCI; • Hardware → Touch screens.
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1 INTRODUCTION
Over the last years, mobile devices evolved from being an
additional device that people carry around to a primary com-
puting and communication device. Nowadays, people per-
form a wide range of tasks on mobile devices, such as taking
pictures, navigation, and connecting with friends. However,
more complex tasks such as text editing are still mainly per-
formed on desktop or laptop computers. A likely reason for
this is that the input expressiveness of touch interaction is
still limited.

While the mouse and keyboard traditionally gave a large
variety to interact with the graphical user interface (GUI), to-
day’s touch interaction is mostly limited to a simple 2D touch
coordinate on the screen. Holz and Baudisch [12] showed
that touch is multidimensional but this is ignored by today’s
touch controllers. Therefore, researchers as well as touch
device manufactures are investigating new input dimensions.
For instance, recent iPhones can sense the pressure of the fin-
ger on the device (so-called ForceTouch). Harrison et al. [10]
proposed to use the knuckle as an alternative input to enable
an enriched interaction for touch surfaces. In their imple-
mentation, they used sound classification to identify knuckle
input. Today, Huawei smartphones do use knuckle input
for shortcuts such as screenshots but they offer no open
source solution, which makes it difficult to study and further
develop this input method on other mobile devices.
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We present two ready-to-deploy models to build enhanced
KnuckleTouch touch interfaces. First, we present a model to
detect single knuckle inputs. Second, we present a long short
term memory (LSTM) gesture recognizer with 17 trained
gestures. We trained both models on ground truth capacitive
images recorded from 18 participants and validated them in
a second study with 12 participants. Our results show that
our LSTM gesture recognizer achieves a 88.6% accuracy on
the validation dataset and the Knuckle detector an accuracy
of 94.6%.

The contribution of this paper is three-fold: 1) a dataset
for training and testing containing 6.120 gestures (618.012
capacitive images) for finger and knuckle gestures and a
separately collected validation dataset with 3.060 gestures;
2) ready-to-deploy models enabling KnuckleTouch and 17
gestures; and 3) an evaluation of KnuckleTouch gestures and
a set of use cases.

2 RELATED WORK
In the following, we present related work which leads to-
wards knuckle input for commodity touch devices. 1) we
present related work in the knuckle input domain. 2) we
present work in conjunction with gesture recognizer. 3) we
present work in which the raw capacitive sensor values are
used to enhance touch interaction.

Knuckle input
For knuckle input a wide range of use cases have been pro-
posed. The most prominent work regarding knuckle interac-
tion is by Harrison et al. [10]. They propose that four different
parts of the finger can be differentiated: The finger pad, the
fingertip, the nail, and the knuckle. Lopes et al. [21] use dif-
ferent hand gestures for actions such as copying, pasting
and deleting objects on a tabletop. Qeexo1 proposed “Fin-
gerSense”. With FingerSense it is possible to differentiate
between finger, knuckle, nail, and stylus input on a touch-
screen. They propose a wide range of possible use cases such
as an eraser tool for drawing or shortcuts. Finally, some new
Huawei phones e.g. the Huawei P20 Pro offer shortcuts using
the knuckle input such as a double tap for a screenshot.

In previous work on detecting the knuckle used various
approaches. Harrison et al. [10] identify the different inputs
based on changes in the acoustical spectrogram retrieved
from conventional medical stethoscope with an electret mi-
crophone. With their system, they could differentiate be-
tween these four input methods with an accuracy of 95%.
In contrast, Lopes et al. [21] use the sound of the gesture
for input identification. They used the characteristics of the
amplitude envelope and the fundamental frequency to detect
different interactions. Chen et al. [5] enabled Knuckle input

1https://www.qeexo.com/ – last accessed 2019-04-04

by using a smartwatch on the interacting arm to differentiate
between tap and knuckle input.

Gesture Input
To detect user-defined gestures, previous work presented
different recognizers. Rubine et al. [23] proposed the Ges-
ture Recognizers Automated in a Novel Direct Manipulation
Architecture (GRANDMA), a first attempt to add gesture
interaction capability to direct manipulation interfaces. One
year later, the same author presented a set of features to au-
tomatically recognize gestures [24], including angle, length
and rotation features. Long et al. [20] extended the set of
features by curviness and the aspect.

To reduce the effort when integrating gesture recognition
into prototypes, Wobbrock et al. [1, 27, 28] presented three
algorithms to recognize gestures using on an instance-based
nearest-neighbor classifier with a Euclidean scoring func-
tion. Additionally. Li et al. [19] showed that his proposed
Protractor showed advantages over both Rubine [23] and the
DTW recognizers [30].

Today, more advanced gesture recognizers use machine
learning (ML). Here, Gillian and Paradiso [7] presented the
Gesture Recognition Toolkit (GRT) which is a cross-platform
machine-learning library for real-time gesture recognition.
Ten et al. [25] presented a different approach that uses multi-
dimensional Dynamic Time Warping (DTW) to detect ges-
tures. Recently, Google published QuickDraw2 which uses
neural networks to recognize user-drawn images. Trigueiros
et al. [26] further compared four well-known machine learn-
ing algorithms to detect hand gestures and found that neural
networks had a good performance.

Capacitive Recognition
A large body of work is dedicated to extracting information
from capacitive sensors. The basic form of data extraction is
built-in in today’s touch devices, where the touch controller
performs a fast and straightforward extraction to determine
the x and y position of the finger to perform an input ac-
tion. However, Holz et al. [12] showed that there is more to
the input than the center of the finger touching the sensor.
Kumar et al. [14] presented an improved pipeline to extract
the x and y position. In their implementation they used a
Convolutional Neural Network (CNN) model to predict the
position and gained a increases of 23.0% in touch accuracy.

Le et al. [18] presented a feasibility analysis of how to per-
form finger identification based on capacitive touchscreens
using CNNs. Based on the possibility of Fully Touch Sensitive
Smartphones, Le et al. [17] presented a model that can detect
which finger is touching the phone at which location. Holz
et al. [13] presented a method to use the capacitive image

2quickdraw.withgoogle.com/
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data for continues authentification. Le et al. [15] proposed
a neural network for detecting if a touchscreen input was
done with a finger or the palm of the hand. The network was
trained by taking capacitive images directly from the smart-
phone and then inserting them into a CNN. They reached an
accuracy of 99.53%. Beyond modifier keys, one prominent
scenario is to extract the finger orientation. Here, Xiao et al.
[29] showed the first implementation using Gaussian process
(GP). Followed by Mayer et al. [22] as they presented a CNN
solution.

Summary
While the single components have been studied in the past,
in this paper, we combine the three domains to foster a ready-
to-deploy gesture recognizer for finger and knuckle input,
which allows other researchers to build their system which
supports knuckle input quickly.

3 CONCEPT AND USE CASES
Previous work focused on identifying touches of knuckles
while commercial devices use the identification for launching
simple actions (e.g., taking screenshots). In the following, we
describe four use cases to demonstrate how knuckle recogni-
tion and knuckle gestures can be used improve mobile touch
interaction.

Improving Multitasking
Previous work [8, 18] presented the concept of porous user
interfaces in the context of finger-aware interaction. The
authors proposed that the GUI displays two different semi-
transparent interfaces and dedicated fingers can only interact
with one of the two interfaces. Similarly, we propose to use
the differentiation of finger and knuckle touches to inter-
act with two overlaying applications as shown in Figure 1a.
Thereby, the finger interacts with the application in the fore-
ground while the knuckle interacts with the background
application. For example, users could type in a messaging
application with the finger while browsing for information
(e.g., looking for a location to tell a friend) could be done
with the knuckle.

Multiple Input Modes
KnuckleTouch can also be used as a different input dimension,
similar to how a computer mouse has at least two buttons
to activate different functions at the same cursor position.
For example, users can draw in a painting application with
the finger tip while the knuckle can be used to erase the
drawn content. This concept can also be applied to other
application domains. The finger tip could be responsible for
the main function while the knuckle can be used to perform

(a) (b)

Figure 1: Figure (a) shows a porous interface for improving
multitasking where users can navigate the map in the back-
ground with the knuckle while typing with the finger com-
fortably in the messenger app. Figure (b) shows the state
change when interacting with a KnuckleTouch shortcut, first
the user only gets presented the list view and by using a
KnuckleTouch directly opens the pop-up menu.

secondary actions such as opening a context menu (see Fig-
ure 1b). Previous work presented GUI widgets that could
also be used with our model [4].

Text Editing Shortcuts
Mobile text editing is inconvenient due to the lack of short-
cuts and the occlusion caused by the fat-finger problem. We
propose using KnuckleTouch to provide shortcuts related to
text editing. Instead of selecting text with direct touch, a
swipe gesture to the left or right with the knuckle could
be used which is independent from text size and occlusion.
Moreover, since copy and paste operations are only accessi-
ble with long-presses in recent user interfaces (UIs) nowa-
days, respective knuckle gestures could be used to avoid
inconvenient dwell times.

In general, knuckle gestures can be used to provide short-
cuts to frequently used functions similar to how modifier
keys on hardware keyboards are used to access functions
such as copy, paste, and text selection.
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Table 1: Gestures and applications defined by our gesture
survey.

No. Gesture Example application

1 Tap Right click
2 Two Tap Multitask view
3 Swipe left

Rotate 3D object4 Swipe right
5 Swipe up
6 Swipe down
7 Two swipe up Open phone setting
8 Two swipe down Open app settings
9 Circle Open camera

10 Arrowhead left Switch between apps11 Arrowhead right
12 ✓ Confirm input
13 Γ Toggle Flashlight
14 L Open custom app15 L
16 S Screenshot
17 Rotate Control volume

Browsing and Navigation Shortcuts
Retrieving information on a desktop or laptop computer (e.g.,
browsing the internet) often requires switching between tabs
and applications, copying and pasting content, and sharing
content with other contacts. KnuckleTouch could be used to
provide convenient shortcuts for these actions. We envision
app switching using a knuckle arrowhead gesture while
copying and pasting content could be performed similar to
what we proposed above.

4 DATA COLLECTION STUDY
To gather data, we follow the research approach pipeline
presented by Le et al. [18] to train a Deep Neural Network
(DNN) in the context of human-computer interaction (HCI).
As the first step, we conducted a user study to collect labeled
touch data while participants performed touch and knuckle
input on a touch device. To understand not only the simple
input but also gesture input, we run an initial gesture elic-
itation survey to collect possible knuckle gestures. In the
data collection study, we asked participants to perform these
gestures.

Gesture Elicitation Survey
We asked 11 participants (all male, age 22-29) if they can
imagine using knuckle as an input for certain actions. We
presented various unistroke gestures which all had the po-
tential to be performed with the knuckle and the finger of
participants to better understand how they are perceived
by the participant. Thus, in the survey we let participants
comment on a set of gestures and how they could be mapped
to the different example applications, see Table 1.

We found that participants did overall not favor two knuckle
gestures as they are too cumbersome to perform. However,
as they pose an interesting addition to simple knuckle in-
put, we decided to keep three gestures in the final gesture
set. Moreover, all selected gestures can also be performed
with a finger. By using the most popular gestures, we, in the
following, use the gestures presented in Table 1.

Apparatus
We used two devices, an Android LG Nexus 5 retrieving the
capacitive images, and a laptop running a Python script to
control the application running on the Nexus 5. We used an
LG Nexus 5 running Android 5.1.1 with a modified kernel to
access the 27×15 8-bit raw capacitive images of the Synaptics
ClearPad 3350 touch sensor. The modified kernel was set up
to capture a capacitive image every 50ms, c.f. Le et al. [16].
The Python script enabled the experimenter to walk the
participants through the whole study. Moreover, the Python
script presented a live visualization of the import to the
experimenter. In case the gesture was not correctly captured
or performed, the experimenter was able to initiate to redo
the last input. Moreover, the participants had the chance to
repeat the gesture by notifying the experimenter to repeat
the gesture. The Android application showed the task to the
participants. Participants were displayed the next gesture to
perform, as well as the example tasks as described in Table 1.

Procedure
We conducted the study in a laboratory environment to have
as little distraction for the participants as possible. After
welcoming the participants, they were introduced to the
study in which participants were told that they could take
a break or quit the study at any point. Afterward, we asked
them to fill a consent form and a demographics questionnaire.
First, participants performed a tutorial where they had to
perform each of the 17 gestures once with the finger and once
with the knuckle. All gestures were performed with the right
hand. Here the experimenter explained each use case for the
gestures. The experimenter explained that the example use
cases were only meant for the usage with the knuckle, but
for data collection purposes they would also have to do them
with the finger as well. Then the data collection began. All of
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(a) (b)

Figure 2: Screenshots of the data collection app.

the 17 gestures had to be executed 10 times with their finger
and knuckle each, resulting in 17 × 10 × 2 = 340 samples.
Participants either first performed all knuckle gestures and
then all finger gestures and vice versa, based on a Latin
square balance. The gestures within the two blocks where
randomized.

Participants
We recruited participants from an internal university self-
volunteer pool. The 18 volunteer participants (4 female and
14 male) were between 21 and 26 years old (M = 24.2, SD =
1.4). The duration of the whole study was approximately
45 minutes. No participant had any movement impairments.
Every participants’ dominant hand was their right hand.

5 MODELLING KNUCKLETOUCH
In the following, we describe two detection mechanisms.
First, we describe a model which enables to classify finger
vs. knuckle input. Second, we present a model to recognize
gestures performed by fingers or knuckles.

Dataset and Preprocessing
In our data collection study, we collected 141.310 capacitive
images with a finger or knuckle present during the tasks
from 6.120 gesture samples from 18 participants.

Knuckle vs. Finger Classifier
To build a classifier to differentiate between finger and knuckle
input, we first transformed the dataset to contain only sin-
gle finger or knuckle inputs. Therefore, we extracted each
touch from the recorded time series dataset and used each
touch as a sample. For this task, we used the blob detec-
tion available via OpenCV v4.0. From the gestures, we ex-
tracted 154, 503 unique blobs. The average blob size of a fin-
ger input is 16.6px2 (SD = 5.3px2) and for a knuckle 13.7px2

(SD = 3.7px2). Furthermore, we augmented our dataset by
flipping the recognized blobs once horizontally, once verti-
cally, and once in both directions. This resulted in an aug-
mented dataset containing 503, 886 capacitive images, exam-
ples are shown in Figure 3. Finally, we pasted the blobs into
the upper left corner of an empty 27 × 15 image, c.f. Mayer
et al. [22].

Baseline. First, we determined a baseline recognition rate
by using well-established ML models to classify finger vs.
knuckle input. We first extracted the following features: the
sum of capacitance, avg of capacitance ellipse area, ellipse
width, ellipse height, and ellipse theta. We used the same
features for the baseline as Le et al. [15]. We used ZeroR, DT,
RF, kNN, and SVM. We performed a grid search with a 5-fold
approach to determine the most suitable hyperparameters
for all four models. The results can be seen in Table 2. We
used a 13 : 5 participants wise split for the train and test set.
Here, we found a maximum accuracy of 79% for the test set
when using a RF model.

Deep Neural Network. To improve upon the baseline mod-
els, we implemented a CNN using Keras (based on the Ten-
sorFlow backend). CNNs are specially tuned to learn and
represent image data like the capacitive image. We used the
trial-and-error method [6] combined with a grid search to
find parameters for the CNN model. Again, using the 13 : 5
participants wise split for the train and test set.

We determined that the deep CNN with four convolu-
tion layer and two dense layers yield the best accuracy. The

Table 2: Results of the knuckle vs. finger classifier. Here, we
present the results of basic machine learning algorithms as
well as the best CNN model of the test set.

Param Prec. Rec. Acc.

ZeroR .5 .5 .5
kNN k = 2 .73 .71 .71
SVM C = 10 & дamma = 10. .72 .72 .72
DT max depth = 22 .67 .73 .73
RF n = 63 &max depth = 60 .79 .79 .79
CNN 4 conv x 2 dense .95 .92 .95
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(a) Finger p1 (b) Finger p2 (c) Finger p3 (d) Finger p4

(e) Knuckle p1 (f) Knuckle p2 (g) Knuckle p3(h) Knuckle p4

Figure 3: The top row shows four random samples of finger
input from different participants. The bottom row shows for
knuckle inputs from the corresponding participants.

model structure is depicted in Figure 4. The input blob im-
age fed to four convolution layers one after the other. After
every second convolution layer a max-pooling layer is ap-
plied. The last convolution layer is followed by two dense
layers with 140 and 70 neurons. Additionally, dropout is ap-
plied after every convolution layer with 45%, and in front
of the dense layers with 50%. Also, every layer has an L1L2-
regularization with a factor of (0.005, 0.015) to counteract
possible overfitting. Bach-normalization is also applied after
every convolutional layer. The output layer has 2 neurons
with a softmax activation function. If we do not report a
hyperparameter, we used the standard value (e.g., optimizer
settings) as reported in Keras’ documentation.

As loss function, we used the cross-entropy loss. The train-
ing ran with an Adam optimizer with a learning rate starting
from .001 with a reduction by 5% after 140 epochs without
improvement and a minimal learning rate of .00001. We used
a batch size of 2000. We used an early stopping approach.
Our Network performed best after 33,767 epochs. The model
was training for approximately 7 days on an Nvidia Tesla
V100. Thus, our final model achieves an accuracy of 95.8%
(the recall is 94.3%, and the precision is 95.7%) on the train
set. On the test set the accuracy is 94.6%, the recall is 92.7%,
and the precision is 95.6%.

Finally, as a gesture contains multiple raw capacitive im-
ages, we build an ensemble to classify if the whole gesture
was performed with a finger or knuckle. Therefore, we pre-
dict the class per input same of a gesture and choose the pre-
dicted class based on class frequency. Our ensemble achieved
a 98.3% accuracy on the train set. The accuracy is 97.3% on
the test set (the recall is 97.9%, and the precision is 96.7%).
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Figure 4: An illustration of the architecture of our CNN
model which we used to differentiate between knuckle and
finger.

Neural Network for Gesture Recognition
We used a CNN-LSTM to train a gesture recognizer. Again we
used the raw capacitive images as input to predict one of the
17 gestures, see Table 1. A gesture was on average 15.9 images
(SD = 13.6, min = 1, max = 301). We used the zero padding
approach to feed the raw capacitive images into the LSTM.
Thus, gestures which are too long will not feed completely
to the network and gestures which are to short are getting
filled zeros. We found feeding 50 images is sufficient for the
model to predict the gesture. Here, only 3% of all gestures
got cut off. Again we used the trial-and-error method [6]
combined with a grid search for hyper-parameters tuning
using the 13 : 5 participants wise split for the train and test
set.

We determined that the CNN-LSTM with four convolution
layers and LSTM layer yield the best accuracy. The model
structure is depicted in Figure 5. 50 capacitive imaged are
fed into the input layer to determine the gesture. The input
is passed on to TimeDistributed3 CNN layers to them to
LSTM layers. We found that four-time distributed convolu-
tion layers followed by two LSTM layers worked the best.
The convolution layers all used a 3 × 3 kernel with padding
set to be same and the filter count is 64 on the upper layer,
followed by 32, 32 and 16 filters. After every second con-
volution layer, a max-pooling layer is added with a kernel
size of 2 × 2. Additionally, dropout is applied after every
convolution layer with 50%, and 25% after each LSTM layer.
The LSTM layer had 80 and 50 neurons. Also, every layer
has an L1L2-regularization with a factor of (0.005, 0.015)
to counteract possible overfitting. The output layer has 17
neurons with a softmax activation function. If we do not
report a hyperparameter, we used the standard value (e.g.,
optimizer settings) as reported in Keras’ documentation.

We found that an Adam optimizer with a learning rate
of 0.0001 and a batch size of 50 works best. The model was

3TimeDistributed layer in Keras: https://keras.io/layers/wrappers/
#TimeDistributed
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Figure 5: An illustration of the architecture of our CNN-
LSTM model which we used to classify gestures.

trained for 3000 epochs. We reached an accuracy of 90.6%
on the training set and 84.4 on the test set. To further boost
the performance, we performed a warm start and retrained
the network with the exact same setting. Here, we used an
early stopping approach. Our Network performed best after
398 epochs. Thus, or final model achieves 97.9% on the train
set and 86.8% on the test set.

Mobile Implementation
We froze these models and used TensorFlow Lite4 for An-
droid to run them directly on the Nexus 5. We implemented
the preprocessing pipeline in JAVA using OpenCV for An-
droid. The CNN can detect each input real time, the average
prediction time is 42.ms (SD = 9.7). The CNN-LSTM waits
for 50 images, or a touch-up event to feed the data into the
network with the zero padding approach. The prediction
time is 1066.8ms (SD = 77.2).

6 KNUCKLETOUCH EVALUATION
To evaluate KnuckleTouch, we conduct a second study with
two parts. In the first part, we collect a validation dataset to
evaluate the model quality of the CNN and the LSTM. In the
second, we get to use the gestures in a text editing scenario.

Apparatus
For the first part, we used the exact hardware and imple-
mentation of our data collection study. For the second part,
we implemented a text selection, copy, past, and app switch-
ing task using gestures as well as the standard Android UI.
While not all gestures were used in the next task, the full
CNN-LSTM model was used which predicts the 17 gestures.

4https://www.tensorflow.org/lite

Procedure
We conducted the study in a laboratory environment to have
as little distraction for the participants as possible. After wel-
coming the participants, they were introduced to the study
where participants were told that they could take a break or
quit the study at any point. Afterward, we asked them to fill
a consent form and a demographics questionnaire.

The first part of the study was exactly as in the first study,
participants performed a tutorial. Afterward, all 17 gestures
had to be performed 15 times with their finger and knuckle
each to collate validation data.

In the second part, participants performed a text editing
task using the gestures, and the standard Android UI. The
order was counterbalanced. In each condition, participants
were asked to select three words and copy-and-paste them
into a second app. Word selection was implemented by the
swipe left and right knuckle gesture, copy with the two
tap knuckle gesture, the knuckle arrowheads are the app
switching gestures, and the knuckle circle would paste data.
After each scenario participants were asked to fill in a raw
NASA-Task Load Index (raw TLX), and a system usability
scale (SUS). Inspired by Le et al. [17], we further collected
qualitative feedback about the perceived easiness, speed,
success, accuracy, and comfort on a 7-point Likert scale.

Finally, we interviewed to understand how the participants
overall liked the idea of KnuckleTouch. In total, this part took
around 15 minutes per participant.

Participants
We recruited 12 participants who did not participate in the
data collection study. The 12 participants (5 female and 7
male) were between 21 and 32 years old (M = 25.3, SD = 4.5).
The duration of the whole study was approximately 1 hour.
No participant had any movement impairments, and every
participants’ dominant hand was their right hand.

7 RESULTS
To validate our models, we conducted a second study with
12 participants in which we recorded an additional 3,060
gestures.

Model Accuracy
We mainly conducted the second study to collect new capac-
itive images from participants which have not taken part in
the first study. This is crucial to collect a model validation set.
In the following we used the new validation set to validate
both the CNN to differentiate between finger and knuckle as
well as to validate the CNN-LSTM gesture recognizer. The
validation set consist out of 3,060 gestures obtained in the
evaluation study. The total number of capacitive images is
618,012.
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Figure 6: Confusion matrix of the CNN-LSTM for identify-
ing 17 gestures with an accuracy of 93.2%. The values in the
figure represent the classification results in percent (%). The
x-axis represent the predicted class and the y-axis the actual
class.

For the CNN-LSTM gesture recognizer (see Figure 5) we
found that gestures were recognized with an accuracy of
88.6% with a recall of 88.5% and an F1-score of 88.6%. The
accuracy of the validation set is even a bit better then the
smaller test set with only 5 participants. This confirms that
our model generalized and is not prawn to overfitting.

The CNN to differentiate between finger and knuckle from
a single capacitive image (see Figure 4) achieved an accu-
racy of 93.2% on the validation set, see Figure 6. The recall
was 90.9% and the precision 93.2%. Moreover, the final CNN
ensemble achieved an accuracy of 97.1%, the recall is 96.9%,
and the precision is 95.6%. The accuracy values for both the
CNN as well as the CNN ensemble are in line with the re-
ported 94.6% and 97.3% arrays values on the test set. Thus,
the model is stable and does not overfit.

Qualitative Feedback in Realistic Scenarios
In the realistic scenario of the evaluation study we asked
participants to fill in a SUS questionnaire [3], raw TLX [11],
as well as the subjective perception by Le et al. [15]. The
qualitative results overall showed that finger input was easier
to perform then the knuckle input, see Table 3. However,
participants reported that they used KnuckleTouch already
255 times in the first part of the study which as they reported
reduced their enthusiasm due to the extensive use before.

Interview Feedback
We conducted interviews with 12 participants. We combined
all interviews from the sessions for analysis. We transcribed
the interviews literally while not summarizing or transcrib-
ing phonetically [2]. Finally, we employed a simplified ver-
sion of qualitative coding with affinity diagramming [9] for
interview analysis.

We first asked participants about their overall impres-
sion. The majority stated that is easy to perform and they
were generally positive (P1, P3, P4, P5, P6, P7, P10, P12). P10
stated “the gestures are intuitive, thus, easy to learn, and are
offering many of possibilities [for new input]”. They state for
instance that KnuckleTouch is “interesting” (P4, P10), “use-
ful” (P3, P7), “practical” (P7), and “easy” (P3). Moreover, P3
and P7 referred to the new interaction with the knuckle as
“impressive”. On the other hand, participants (P1, P2, P4, P5,
P9, P8, P10, P12) stated that extensive use of KnuckleTouch
is unpleasant. Additionally, P6, P7, and P12 stated that ges-
tures with two knuckles are harder to perform. Finally, they
(P1, P4, P5, P6, P7, P8, P11) had comments concerning the
familiarity of KnuckleTouch. Thus, we argue that the input
suffers from familiarity in the given scenario and the fact
that participants were asked to perform the input 255 times
strongly reflected in their comments. Here, they also argued
themselves that they see the input to be used not as often,
here P10 stated: “maybe 10-20 times a day”. Additionally, P4
stated: “when I use it regularly, it will be a normal interaction”.

We additionally asked participants about the advantages
and disadvantages to better understand why they would use
KnuckleTouch or not. Four participants (P2, P5, P8, P11) did
not see any advantages while only one would not try it at
the same time. Five participants (P1, P4, P6, P9, P12) said that

Table 3: Qualitative results from copy and paste task in both
conditions. raw TLX on a 21-point scale (0-20), the SUS on its’
standard scale from 0 to 100, and the subjective perceptions
(7-point Likert scale) as described by Le et al. [15]. We used
a Friedman test to determine statistically significant differ-
ence between Finger and Knuckle

Finger Knuckle
M SD M SD χ 2 p-value

raw TLX 2.0 1.6 6.6 2.5 12. <.001
SUS 89.6 8.8 57.9 16.1 8.3 <.004
Easiness 6.7 0.8 4.8 1.6 8.3 <.004
Speed 6.7 0.5 2.9 1.2 12. <.001
Success 6.1 1.6 3.6 1.7 6.4 <.011
Accuracy 6.2 1.3 3.4 1.4 11. <.001
Comfort 6.7 0.7 3.1 1.4 12. <.001
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the advantages depend on the implementation, reliability, as
well as the use case.

We asked participants if they would use KnuckleTouch if
their next phone would offer this new feature. Here, we found
that four participants (P8, P9, P11, P12) were reluctant. Two
participants (P5, P6) were reluctant and stated that if there
were no technical issues they would use it. Six participants
would use KnuckleTouch (P1, P2, P3, P4, P7, P10).

Technical issues were brought up by five participants (P2,
P3, P4, P7, P8). Here they mainly stated that the model is
too slow and no feedback is presented during the model
evaluation process. A comment by P6 is remarkable to un-
derstand the overall results of the interviews and questioners:
“if the prototype was to work more smoothly and faster, I might
have a different impression on the interaction.” Participants
also saw input issues related to the fat-finger problem, here
three participants (P2, P5, P9) argued that KnuckleTouch is
an imprecise input.

Three participants (P3, P5, P7) stated that they would
envision KnuckleTouch to perform different functions and not
replace the ones which are already easy to perform. “actions
which are normally super long-winded to reach” - P7. Nine
participants (P2, P3, P4, P6, P7, P8, P10) see KnuckleTouch as
a possibility to input shortcuts, such as “screenshots” - P3,
“volume” - P7, “turn on alarm for the next morning” - P2, and
“next or second next song” - P10. They also saw KnuckleTouch
as an extra input dimension, this was the most prominent use
case among our participants (P2, P3, P4, P5, P6, P8, P9, P10,
P12). On the one hand, they saw it as a system-wide feature,
“it is a new input, [...] an additional new input dimension” -
P5. On the other hand, they also could envision it as an app
specify interaction, “alternative stroke [in a painting app]” -
P4. Finally, P9 additionally stated that KnuckleTouch would be
useful for other devices types, e.g., tabletops, and wall-sized
displays.

8 DISCUSSION
Our CNN-LSTM gesture recognizer achieved an 88.6% ac-
curacy in our validation study, and our CNN KnuckleTouch
recognizer an accuracy of 93.2%. The results showed that
both models are not prone to overfitting and thus, generalize
well to new data.

In contrast to proprietary approaches such as the one
from Huawei, or techniques that are based on the sound
of impact [10], our approach works on virtually all recent
smartphones with a mutual capacitive touchscreen. We fur-
ther share this approach with the community to enable them
to use KnuckleTouch and the gestures on commodity smart-
phones. As today’s touch devices all have a capacitive reso-
lution of around 4 × 4mm per pixel, the models can easily be
deployed on different devices. Deploying the models on more
modern phones will also reduce prediction time as phones

nowadays are equipped with a dedicated ML acceleration
unit. Reducing the prediction time and, therefore, counter-
acting the comments by participants that the system is to
slow, will likely also increase the overall rating of the current
implementation.

Participants perceived our use cases, that we built upon
the models, as easy to perform and intuitive. However, the ex-
tensive use lowered the results for the qualitative feedback as
well as the participants’ enthusiasm. Due to that, participants
were not used to using knuckles as an input method. Using
knuckles, e.g., for taking screenshots, is recently only imple-
mented on Huawei devices. Thus, this study is an excessive
test for KnuckleTouch as participants were asked to perform
uncommonly many KnuckleTouch gestures. We propose a
long-term study in which we are certain that the results will
reveal more natural feedback.

Our evaluation study gave us the opportunity to ask par-
ticipants for potential use cases when KnuckleTouch gestures
could be used. Our interview analysis revealed two common
themes to use the new input: 1) KnuckleTouch as an additional
input dimension, and 2) KnuckleTouch as shortcuts. Also clear
from the comments is that our participants do not want to
substitute already available functions. They stated that they
want additional functions or hard to access functions faster
to reach using KnuckleTouch. This also contributes to the fact
that they disliked the KnuckleTouch gestures in the realistic
scenario as, for instance, app switching is already easy to
perform and well-known.

In summary, our evaluation shows that KnuckleTouch can
be used to provide shortcuts to frequently used functions
and to improve the touch expressiveness. Further, potential
users perceived KnuckleTouch as intuitive and easy to per-
form while it can be accurately recognized on off-the-shelf
smartphones.

9 CONCLUSION
In this paper, we presented KnuckleTouch to enrich the ex-
pressiveness for touch-based devices. In a first step, we pre-
sented a CNN model to differentiate touches from fingers
and knuckles based on single capacitive images of commod-
ity smartphones. Our model achieved an accuracy of 93.2%
using a validation set. In the next step, we extend our model
to recognize gestures using a CNN-LSTM with an accuracy
of 88.6% . By using an ensemble of CNNs, we further show
an accuracy of 97.1% can be achieved for differentiating be-
tween fingers and knuckles during gesture recognition.

In a subsequent evaluation study, we show that our model
generalizes well. Our participants perceived KnuckleTouch
as easy to learn, intuitive, practical, and it offers many pos-
sibilities for new input. However, the study revealed that
the extensive use of KnuckleTouch is unpleasant due to the
unfamiliarity of this input method. Thus, future work could
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evaluate KnuckleTouch in a long-term study to consider this
effect. For this, we provide our dataset and the models which
are ready-to-deploy on commodity touch-based devices. It
is also left to future work to explore this input method for
mobile situations, such as while walking and being encum-
bered.

10 DATASET AND MODEL
We publicly release the dataset together with jupyter note-
books to run Python 3.6 code to process the data and train
the models. All models are trained and tested with Tensor-
Flow 1.13.1. Additionally, we provide ready to deploy models
for both the CNN classifier and the CNN-LSTM gesture rec-
ognizer. This will enable other researchers to build upon the
presented research. The code is available under MIT license
here:
https://git.perceptualui.org/public-projects/knuckletouch
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