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Abstract

As robots increasingly share human environments, we need to un-

derstand how their behavioral parameters affect our perceptions

of safety and interaction quality. To explore this, we conducted a

user study (N=48) investigating the relationship between approach

speed, stopping distance, and the perceived danger of the object

itself in a robot-human handover situation. Participants iteratively

adjusted the speed and distance of a robot handing them items

of varying danger categories to find a combination they consid-

ered optimal. We found a significant impact of the delivered item’s

perceived danger index on speed and distance preferences and

could identify a linear dependency. By eliciting user preferences for

these parameters, we can provide guidelines for adaptable robotic

interactions that are considered safe, thus contributing to the de-

sign of spaces where robots and humans can coexist seamlessly,

emphasizing user experience, trust, and effective collaboration.
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Figure 1: We investigate the preferred speed and distance

when handing over objects varying in perceived danger.

1 Introduction

With recent advances in Human-Robot Interaction (HRI), collab-

orative robots (cobots) will likely interact closely with humans in

smart spaces in the near future. They will not only handle the phys-

ical tasks we assign them, but instead, humans and robots can be

expected to achieve goals collaboratively. Especially in domestic set-

tings, cobots are claimed to provide a variety of advantages and op-

portunities [48, 54, 66]. However, robotic smart spaces, where robots

perform tasks in close proximity to humans, require a thoughtful

design of the spatial interaction parameters. One key factor for

the successful adoption of robot technology is user trust, which

has been shown to rely, among other factors, on robots respecting

spatial norms similar to those among humans. Therefore, the spa-

tial rules of social interaction (proxemics) are a key challenge of

human-aware navigation in robotics, especially during handovers,

one of the most fundamental tasks in human-robot collaboration.

Research suggests that the objects involved in a situation influence

the assessment of potential hazards and the user’s perception of

adequate distance and speed [65], which in turn directly affects

trust. While holistic approaches exist to accommodate user trust in

human-robot handovers, the interplay between proxemics and the

objects involved in handovers has, to our knowledge, not yet been

investigated systematically.
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Designing interaction with robots in shared spaces requires care-

ful consideration of how this space is used. Much like in human-

human interaction [21, 22, 59], where we maintain a safe and com-

fortable distance to protect our bodies from others [28], people

keep a certain distance when interacting with robots [26, 41, 51, 56].

Although studies have mapped out the immediate protective space,

the peripersonal space (PPS) [26, 50, 56] and spaces for social inter-

action [41, 51] around the robot itself, proxemic studies have not

yet considered cobots that assist users with tools [15]. If a cobot

is carrying a knife, how should it approach the user, and what

distance and speed should it observe? We know that collaborative

settings in which robots hold objects can vary in perceived danger

level [43] and that perceived danger affects proxemic variables such

as the perception of time-to-contact [7] and the PPS [12, 31, 50].

Thus, we must investigate how objects of different perceived danger

held by a cobot will affect spatial interaction in terms of speed and

distance [19] in order to make HRI in handover tasks feel safe [57].

We conducted a within-subjects study (N=48) to investigate the

effects of the object in a handover situation on proxemic variables

(desired distance and speed) of the robot approach (see Figure 1).

For this, we used a 6 DoF robot arm on a linear track to approach

the user and hand over different objects. We asked participants to

iteratively set the approaching speed and stopping distance to let

them find the settings they felt most comfortable with. This was

done for nine different objects and three baseline measurements.

We found that the perceived danger of an object has a significant

influence on the preferred approach speed and stopping distance

during handovers. Furthermore, we could model a linear depen-

dency of both speed and distance on an object’s perceived danger

index (PDI), a score representing its perceived dangerousness [42].

HRI researchers and designers aiming to create or investigate col-

laborative scenarios can use our findings to inform initial robot

configurations. More specifically, kinetic parameters with which the

user will feel safe during handovers can be systematically derived

from the PDI of an item. This allows system designers to create

robotic systems that align with user expectations and enhance the

user experience in smart spaces.

2 Related Work

Understanding the foundational principles of proxemics among hu-

mans provides the baseline for investigating how people expect and

interpret the spatial behavior of robots around them. This chapter

reviews existing research on proxemics, approach behaviors, and

object danger perception to establish the foundation for our study.

2.1 Approach Distance

Human-Human Proxemics. First introduced byHall [22], the term
Proxemics describes the phenomenon of individuals maintaining

varying distances based on social context, relationship, and cultural

norms. He categorized the space around a person into concentric cir-

cular zones: intimate (<45cm), personal (<120cm), social (<305cm),

and public [21]. The Personal Space (PS) denotes the area around

a person in which an intruding person can cause discomfort and

arousal [24]. Since then, the concept of PS, its size and shape, as

well as influencing factors, have undergone continuous refinement.

A widely acknowledged strategy for investigating PS is the stop-

distance approach pioneered by Williams [74], where the distance

to the subject is gradually altered until the distance at which the

subject first becomes uncomfortable. The size of this range is influ-

enced by a variety of factors, such as culture and behavior of the

other person [1, 2], social status [18, 40, 63], personality [16, 64, 74],

motivation [28], level of stress [14], or height [10].

The term "Interpersonal Distance" (IPD) denotes the actual dis-

tance an individual keeps during an interaction, and the preferred

IPD is commonly considered to lie within the boundary of PS. Ac-

cording to Argyle’s equilibrium theory [4], a person’s preferred

IPD is the point within the PS where an individual’s desire to ap-

proach (e.g., to converse) and to avoid (e.g., unwanted intimacy) are

balanced. Iachini et al. [32] found different values for participants

when approaching vs. being approached in the stop-distance task;

however, Welsch et al. [72] could not replicate this. Instead, they

discovered that the increase in discomfort due to deviations from

the preferred IPD varies depending on whether the actual motion

is directed toward or away from the subject.

PPS is a concept that is relevant when discussing human spa-

tial behavior. Unlike PS, rooted in psychology and social sciences,

PPS is defined in neuroscience and refers to the immediate area

surrounding the body where objects can be directly reached and

manipulated [33]. It plays a crucial role in motor control by guiding

actions such as reaching, grasping, and avoiding obstacles through

continuous remapping of the multisensory space around the body

based on sensorimotor requirements [8]. Hunley and Lourenco [31]

note that many of the mechanisms and measures used to define PPS

are quite similar to those for PS. Iachini et al. [32] found that values

for PS and PPS differed only in the passive approach, concluding

that PPS and PS coincide in the active approach.

Human-Robot Proxemics. Extending from Hall [22], proxemics

in the context of HRI is the study of what influences the preferred

distance between human and robot [49]. To establish trust in human-

robot relationships and to successfully integrate robots into social

spaces, they must adhere to the same social movement norms as

humans [6, 49]. Like in human proxemics, the stop-distance task is a

widely used approach to investigate comfortable distances between

humans and robots [61, 70]. However, findings on PS in human-

robot scenarios vary greatly. While several studies found that

human-robot IPDs do not differ from those among humans [30, 69],

others find much larger distances (e.g., 173cm while standing [68])

or smaller (e.g., 30cm [67]) distances than Hall’s boundaries from 45

to 120cm [22]. Sorrentino et al. [60] argue that a robot’s appearance

and personality traits can influence proxemic behavior, indicating

that robots might need to adopt unique strategies that differ from

those expected in human-human interactions.

Syrdal et al. [64] recognized the effect of user personality. How-

ever, they state the difference seems to disappear over time, which

was later confirmed [39, 46]. The varying results can be explained

by the varying study contexts (i.e., user task, approach direction),

different types of robots, and individual preferences and experi-

ences. Torta et al. [68] propose a model for PS robotic navigation,

taking into account contextual factors such as user position or per-

sonal preferences, suggesting specific distances that robots should

observe to ensure user comfort.
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The range of factors influencing PS shows that special attention

should be given to the parameters during user studies. To isolate

the effect of a specific variable in user studies, it is crucial to control

or minimize other factors known to impact user perception and

comfort. Additionally, factors that vary based on user personality

traits, such as sensitivity to speed, proximity, or perceived anthro-

pomorphism, should be standardized to settings that are least likely

to cause discomfort, ensuring that observed effects are primarily

attributable to the variable under investigation.

2.2 Approach Velocity

The robot movement speed can influence an interaction’s perceived

safety and its overall effectiveness. The scenarios most investigated

in prior work involve the robot passing the participant or approach-

ing them for the purpose of interaction. For passing tasks, speed

and distance interplay to shape user perceptions. For example, Neg-

gers et al. [52] tested various robot speeds (35, 80, 125, 170 cm/s)

at different distances (60, 80, 100, 120 cm), finding that the closest

distance required the slowest speed for user comfort, while the

most comfortable speed at all other distances was 80 cm/s. The

discomfort associated with the slowest speed was attributed to in-

creased waiting times during the interaction. Similarly, Klüber and

Onnasch [36] demonstrated a tradeoff between speed and distance

in virtual reality (VR); they observed that participants allowed the

robot to come closer when it moved at slower speeds, suggesting a

balancing act between speed and distance for safety and comfort.

Zhang et al. [77] reported similar tradeoffs in mixed reality.

For approach tasks involving direct interaction, user comfort

levels are influenced by the purpose of the robot’s approach and

the associated velocity. Askin and Bitsch [5] found that a robot

approaching at a moderate speed (34.4 cm/s) was preferred over

slower (17.9 cm/s) or faster speeds (51.1 cm/s) during an assembly

task, where a robot placed screws, indicating that high speeds can

lead to discomfort. Lu et al. [45] compared side and front approaches

at two velocities (50 and 100 cm/s) and found that stress and mental

demand were higher at the faster speed, particularly during side

approaches, highlighting the effect of approach direction on user

perceptions. Koppenborg et al. [37] found that a robot velocity

of 140 cm/s significantly increased workload, anxiety, and risk

cognition compared to a velocity of 75 cm/s. Slajpah et al. [58]

came to a similar conclusion and further identified that participants

rated higher arousal and lower safety for the faster speed (80 cm/s),

especially when standing compared to sitting. They suggested a

differential threshold for noticeable speed changes of around 25-30%.

There is also work on dynamic approaches. For example, Mitsunaga

et al. [47] proposed a strategy where the robot adapts its speed to

subconscious human body signals, aiming to enhance user comfort

by synchronizing its behavior with subtle human cues.

In summary, existing studies provide inconsistent recommenda-

tions regarding safe or acceptable robot approach speeds in collab-

orative settings, leaving developers and researchers without clear

design guidelines, a shortcoming which is also criticized by Kop-

penborg et al. [37]. However, the influencing factors seem to be

approach direction and trajectory predictability. Furthermore, there

seems to be a tradeoff between speed and approach distance, i.e.,

the robot can come closer if it runs slower.

2.3 Handovers

Prior research in psychology established that the item(s) involved

influence the assessment of the danger of a situation. Tabor et al.

[65] found that a person’s distance from an object that might evoke

pain is generally estimated too low. Participants significantly un-

derestimated the distance to the pain-evoking stimulus compared

to a pain-relieving stimulus. Cole et al. [11] observed the same phe-

nomenon after comparing participants’ assumptions about their

distance to a threatening animal; they found that the reported lev-

els of threat and disgust significantly affected their estimation, i.e.,

objects are perceived closer than they are. While those studies ex-

amined conditions in which both participant and object were static,

Brendel et al. [7] investigated the difference in the estimated time

of collision between threatening and non-threatening objects on a

collision course with the participant. A stereoscopic display showed

objects of varying danger approaching, and participants were to

indicate the probable moment of collision. Results show that this

moment was significantly earlier for dangerous objects than for neu-

tral ones. Witt and Sugovic [76] confirmed that the moving speed

of objects perceived as dangerous is rated significantly higher than

that of neutral items. They show that the perceived threat by an

object influences how its speed and distance are assessed, namely

that its speed is overestimated and its distance is underestimated.

Since a dangerous item can potentially inflict harm or injury, these

responses make evolutionary sense, giving a person more time and

room to take protective measures.

However, a systematic assessment of how the object affects the

user is missing from most studies that investigate the interaction

between speed, distance, and object in handover tasks. Anelli et al.

[3] established a “danger rating” prior to investigating resonant

mechanisms during interaction with objects of varying danger.

Leusmann et al. [43] established a database of household objects

associated with users’ PDI, a value indicating whether an item is

perceived as dangerous on a scale from 0 (strongly disagree) to 100

(strongly agree) when handled by a robot, allowing HRI researchers

to correlate observations to objects involved during collaboration.

3 Studying Preferred Robot Speed and Distance

for Different Objects

Building on this understanding of human-human and human-robot

proxemics, our study investigates the interplay of three critical

factors – preferred working speed, preferred distance, and perceived

item danger – on HRI dynamics. Specifically, we aim to answer the

following research questions:

RQ1. How does the perceived danger index of an object in-

fluence preferred approach a) speed and stopping b) distance in
robot-to-human handovers?

RQ2. How does the perceived danger index influence the ability

to predict preferred approach a) speed and b) stopping distance in

robot-human handovers?

We selected a range of items for the robot to carry from the

database by Leusmann et al. [43]. We divided their PDI (range: 0-

100) into three equal parts (0-33= Low, 33-66 = Medium, 66-100 =

High) and selected three objects from each (see Table 1). Finally,
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we added three control conditions in which the robot approached

with an empty gripper, i.e., without carrying any object. These

served as a baseline for comparison to understand the impact of

item danger on preferred approach parameters. Alongside the nine

item conditions, this resulted in a total of 12 conditions, this resulted

in a total of 12 conditions, the order of which was determined using

a size 12 Latin-square design to account for habituation effects.

Most studies on trust or discomfort duringHRI presented discrete

variations of robot dynamics and collected participant responses

through surveys. However, for our specific goal of modeling contin-

uous user preferences for approach speed and distance, we sought

a more fine-grained, interactive method. Surveys often rely on ret-

rospective reflection and require pausing the task [27]. By contrast,

our iterative method allowed participants to adjust robot behav-

ior in situ, better capturing their immediate comfort preferences.

Furthermore, investigating discrete levels often results in missing

the true optimum, which usually falls between two adjacent levels.

Even more granular levels can only approximate optimal values

while increasing complexity. In this work, we aim to understand

the relationship among the three continuous variables: speed, dis-

tance, and object danger. In a full-design study with 3-5 levels each,

this would result in an unfeasible number of iterations. Thus, we

decided to fix only one variable and let participants actively set val-

ues for approach velocity and stopping distance before triggering

the robot approach (see Figure 2 for the study setup). They were

asked to repeat this procedure until they found the combination

of speed and distance they felt most comfortable with. This pro-

cedure allowed us to gather in-situ quantitative data representing

participants’ optimal comfort levels.

3.1 Study Environment

We conducted the study in a laboratory that was carefully modified

to resemble a home environment. The laboratory featured a func-

tional custom-made kitchen, including appliances and a vinyl floor

with a hardwood look, creating a setting that closely mimics the aes-

thetics and functionality of a real home. This setup contrasts with

the environments used in many other proxemics studies, which are

often conducted in sterile laboratories, seminar rooms, or VR simu-

lations. While those also provide controlled conditions, they often

Table 1: Selected items with their PDI according to Leusmann

et al. [43] on a 0-100 scale and their respective category.

Item PDI Danger Category

Sponge 7.4

LowMeasuring Cup 13.8

Funnel 18.4

Coffee Cup 34.7

MediumPlate 36.7

Bottle 39.3

Scissors 67.2

HighCarving Fork 68.3

Chef’s Knife 70.8

Figure 2: Close-up of the study setup. Participants stand at

one of two approach positions facing the robot arm. When

the robot stops moving, participants can press the green but-

ton to confirm the end of the handover.

lack ecological validity, making it difficult to generalize findings to

real-world home environments. By replicating a realistic domestic

setting, our study ensures that the insights gained are more directly

applicable to the design of robots for actual households, thereby

bridging the gap between controlled experimental research and

practical, real-world applications (see Figure 2).

3.2 Apparatus

The robot used in the study is an overhead, rail-mounted Kinova

Gen3 6DoF robotic arm [34] operated via Kortex Python API [55]

v2.6.0. For the study, the robot picks and places items from the coun-

tertop using a RobotiQ 2F-140 [35] gripper. During the approach,

the end-effector moves at a constant height toward the participant.

The robot base is attached to a carriage unit moving at a height of

2.31m along a rail (aligning with the gripper movement). The unit

can extend downwards by 40cm, extending the robot’s reach, which

was used to adapt to the participant’s height. Both carriage motions

are driven by 24V servo motors, controlled by an Elmo Gold Duo

digital servo drive [44]. Participants could control the robot using a

web interface shown on an Android tablet, featuring a start button

and two unlabeled sliders for the speed and distance settings. The

slider for setting distance was labeled "Closeness" to map more

extreme values consistently to the right. The sliders are mapped

linearly to values in 𝑣𝑎𝑝𝑝 = [44, 76] 𝑐𝑚
𝑠 or 𝑑𝑎𝑝𝑝 = [120, 0] 𝑐𝑚 re-

spectively. A desktop computer opposing the kitchenette was used

for surveys and communication with the investigator.

3.3 Pilot Study

In a pilot experiment, we ran trials where the robot approached

participants without an item to determine the available speed range.

Following the staircase method [20], we determined a mean thresh-

old of 𝑣 = 66
𝑐𝑚
𝑠 (𝑆𝐷 = 11) above which participants consid-

ered the approach too fast. The available speed range was then

set to the maximum possible speed of 𝑣𝑚𝑎𝑥 = 76
𝑐𝑚
𝑠 and 𝑣𝑚𝑖𝑛 =

𝑣 − (𝑣𝑚𝑎𝑥 − 𝑣) − 𝑆𝐷 = 0.44𝑐𝑚𝑠 . For the stopping distance range, we

allowed participants to choose from the whole range of 0-120cm

defined as PS by Hall [21].

3.4 Procedure

After welcoming the participants, we explained the study procedure

to them (see Figure 3). After all open questions were answered, we
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Intro Q1 TrialDemo Q2 Approach Q3 End

9 Items | 3 Control

Welcoming

Overview

Consent

Demographics

Measures

ATI

Familiarity

Danger

Danger

until comfortable

Figure 3: Study Procedure. In the main part (yellow), par-

ticipants were presented with 9 items or control conditions

(outer loop) and could repeat the approach until they felt com-

fortable with the selected speed and distance (inner loop).

asked them to sign an informed consent form. Our ethics board ap-

proved the study. Afterward, we showed them the robot approach

procedure and how to use the control interface. During this session,

we showed two approaches with values for speed and distance from

the middle of the available range. Participants were also informed

that the robot’s closest possible stopping point corresponded ap-

proximately to the location of their sternum, providing a clear

reference for the minimum distance. Before they continued, we

asked them to fill out a demographic survey and the Affinity of

Technology (ATI) questionnaire [17], and we measured their body

height to adapt handover height (Q1). We then explained the ap-

paratus to them and let them try it out with a neutral item before

proceeding with the main part of the study, with 12 conditions.

We asked participants to evaluate each approach as if they were

working in the kitchen and requested the robot to bring the item.

After this, the study conductor left the room to help partici-

pants put themselves into this situation and to avoid any bias on

participant behavior, emotion, or performance [38, 53]. The study

conductor observed the running study via video stream and could

communicate with participants via an audio interface if needed.

For safety reasons, the study conductor could intervene or stop

the study in case of any issues in the study room. Each condition

started with participants filling out a survey assessing the upcoming

item regarding familiarity and perceived hazardousness (Q2). Then,

the iterative approach section began with the robot repeatedly ap-

proaching the participant with the same item but with different

speeds and distances as defined by the user. The slider’s initial

values for each condition were at 50%. In subsequent repetitions

during the condition, participants were presented with their last

input to be adjusted. An iteration followed these steps: (1) At the

approach position facing the robot, participants indicate on a tablet

that they are ready, and the robot moves to the starting point 180 cm

away from them. (2) Participants set speed and distance on a tablet

and start the approach. (3) The robot moves at the set speed and

stops at the set distance. The robot moved with its gripper moving

in a straight line at a constant height of 71% of the participant’s

body height [23, 75] (see Figure 4). The robot’s trajectory was kept

constant throughout the study to exclude a lack of predictability

as an influential factor [37]. We chose the gripping position for

each object in a manner that allowed participants to easily grasp

them [62], e.g., knife, scissors, and fork were held by the robot in

such a way that the handle was pointing towards the participant.

(4) Instead of taking the item, participants simulated the handover

by pushing a button attached to the robot’s last joint. This way,

Figure 4: Schematic top-down view of a robot approach to

position 1. For position 2, the procedure is mirrored (see

Figure 2). The participant stands at position (C), facing point

(A), the robot’s starting position (depicted by the right robot).

Point (B) marks the Personal Space boundary [21]. Based

on the participant’s selection for the closeness of approach

𝑠 ∈ [0, 1], the stopping position is 𝑑𝑎𝑝𝑝 =
−→
𝐴𝐵 + 𝑠 · −→𝐵𝐶. The left

robot depicts the stopping position for 𝑠 = 1.

the presentation of an item was kept constant for each approach.

This concludes an iteration, and the participant moves to the op-

posite approach position in order to minimize unnecessary and

time-consuming robot motion back to the original position.

We asked participants to iterate until they felt comfortable with

the robot’s approach speed and stopping distance. In this case, they

tapped a button on the tablet and went to answer a final question

assessing the danger perceived by the robot’s approach in the last

condition (Q3). After participants had completed all scenarios, we

thanked them for their participation and reimbursed them.

3.5 Participants

We recruited 48 participants via the institution’s mailing list be-

tween the ages of 16 and 71 (𝑀 = 29.2, 𝑆𝐷 = 11.1), of which 29

were female and 19 were male. Most (19) of them had never encoun-

tered robots before, 18 between one and three times, five between

four and seven times, and five more than seven times, most of

whom reported their experience with vacuum robots. To adapt han-

dover height, we measured their body height before the experiment

(𝑀 = 1.73𝑚, 𝑆𝐷 = 0.09𝑚). We also asked them about their living

situation, specifically the number of people in their household and

the number of times they prepared meals per week together with

others, to evaluate their customization to sharing the kitchen space.

Participants had an average ATI [17] of 3.84 (𝑆𝐷 = 0.83). 23% of our

participants lived alone, 31% with one other person, and 46% with

two or more. 19% of participants reported no joint cooking, 31% on

average once per week, 19% twice per week, and 31% at least three

times per week (𝑀 = 2.35times, 𝑆𝐷 = 2.32).

4 Results

We analyzed the impact of item Danger on preferred approach

Speed and stopping Distance and derived direct relationships be-

tween the variables that allow us to predict robotmotion parameters

based on the carried item.
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Figure 5: Measured values for the optimal speed and distance

for the four danger categories.

4.1 Impact on Speed (RQ1a)

We investigated the impact of the objects’ Danger on the selected

movement Speed. We first performed a Shapiro-Wilk Normality

Test, which showed that the data is not normally distributed (𝑊 =

.871, 𝑝 < .001). Thus, we performed a Friedman test, which showed

a significant effect of danger on speed (𝜒2 (48) = 44.6, 𝑝 < .001,

𝐾𝑒𝑛𝑑𝑎𝑙𝑙 𝑊 = .31, see Figure 5a). Finally, we conducted Wilcoxon

signed rank post hoc comparisons. We found statistically significant

differences for Baseline vs. High (𝑝 < .001), Low vs. High (𝑝 < .001),

Medium vs. High (𝑝 < .001), Baseline vs. Medium (𝑝 = .042), and

Low vs. Medium (𝑝 < .002); all other 𝑝 > .05.

4.2 Impact on Distance (RQ1b)

We investigated the impact of the objects’ Danger on the se-

lectedDistance. We first performed a Shapiro-Wilk Normality Test,

which showed that the data is not normally distributed (𝑊 = .984,

𝑝 = .025). Thus, we performed a Friedman test, which showed a

significant effect of danger on distance (𝜒2 (48) = 28.6, 𝑝 < .001,

𝐾𝑒𝑛𝑑𝑎𝑙𝑙 𝑊 = .199). see Figure 5b. Finally, we conducted Wilcoxon

signed rank post hoc comparisons. We found statistically significant

differences for Baseline vs. High (𝑝 < .001), Low vs. High (𝑝 < .001),

and Medium vs. High (𝑝 < .001); all other 𝑝 > .05.
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Figure 6: Linear model to predict the users’ preferred ap-

proach dynamics given the objects’ danger level.

4.3 Modeling Impact on Distance & Speed (RQ2)

Since we saw an overall impact of Danger on both Speed and

Distance, we modeled their impact using the perceived danger

values from Leusmann et al. [43]. We found that linear models

result in the best fits, i.e., the lowest AIC, with 𝑅2 = .83 for speed

(see Figure 6a) and 𝑅2 = .77 for distance (see Figure 6b). Thus, we

can model the maximum speed with 𝑣𝑎𝑝𝑝 (𝑑) with

𝑣𝑎𝑝𝑝 (𝑑) = −0.105 ∗ 𝑑 + 73.321 (1)

and the distance 𝑑𝑖𝑠𝑡𝑎𝑝𝑝 (𝑑) with

𝑑𝑖𝑠𝑡𝑎𝑝𝑝 (𝑑) = 0.144 ∗ 𝑑 + 15.171 (2)

where 𝑑 is the PDI of the object.

Next, we investigated the relationship between Speed and Dis-

tance. For this, we estimated the probability density function, i.e.,

the likelihood of a given combination being picked by the users,

using a kernel density estimation (see Figure 7). With this, we un-

derstand which combination of speed and distance is generally most

likely for each condition. We marked the maxima for each condition

in Figure 7, which shows that the more dangerous the object is, the

higher the distance and the lower the speed. This is unsurprising

as the independent findings (see Figure 5) show a similar outcome.

However, this also means that a speed-distance tradeoff did not

manifest. We also investigated the gradient from the most likely
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Figure 7: Heatmap of the probability density distribution of Distance and Speed. Darker red areas show more responses and,

thus, more agreement. A trend is visible from the maximum to the bottom right, indicating that more dangerous items elicit

both larger preferred distances and lower preferred speeds. The maximum speed we could explore was limited by local legal

requirements about safe moving speeds for robots.

combination (maximum) to the least likely (see Figure 7). From this,

we see that the widest distances between the contour lines occur

in the direction of larger distances and slower speeds, indicating

the direction of a higher probability of a combination.

5 Discussion

First, we will address our research questions. Then, we will discuss

broader implications for the design of cobots, including practical

recommendations for adaptive behaviors and considerations for

integrating robots into shared human environments. Finally, we

address the limitations of the study and propose future research to

extend these insights to more diverse and complex contexts.

5.1 Higher Object Danger Leads to Slower

Preferred Speeds and Higher Preferred

Distances

We investigated preferences for distance and speed in a cobot han-

dover situation with items of varying PDI. Participants preferred

a slower approach speed for objects perceived as dangerous, such

as a chef’s knife, while faster approaches were preferred for han-

dovers with less dangerous objects, such as a sponge. We found the

reverse pattern with regard to preferred distance, where items with

higher danger levels were associated with larger preferred distances

for handovers. Thus, for RQ1, our findings indicate that an item’s

perceived danger significantly influences both the preferred robot

speed and the desired stopping distance.

5.2 Linear Relationship

We identified a linear relationship between an item’s PDI 𝑑 and the

user-preferred approach speed 𝑣𝑎𝑝𝑝 and stopping distance 𝑑𝑖𝑠𝑡𝑎𝑝𝑝 .

Our findings are relatively in line with the values from the large-

scale online study [43]. This suggests that Equation 1 and 2 can be

used for all 153 items from the online survey to find the optimally

preferred speed and distance values for these objects. This is a

direct response to our RQ2, as we could successfully develop linear

models with a reasonably good fit for both speed and distance.

5.3 No Speed-Distance Tradeoff

In related work, some studies found a tradeoff between speed and

distance (e.g., Klüber and Onnasch [36]), i.e., that closer stopping

distances would require lower approach speeds. However, our study

design did not provoke such behavior in any of the tested danger

categories since we only manipulated one (danger) of the three

variables: danger, speed, and distance. Hence, we cannot make a

general statement about such an effect. Instead, our findings indi-

cate that users prefer lower speeds and higher stopping distances

simultaneously when delivering potentially hazardous items. We

argue that our results reflect users’ preferred expectations for robot

behavior rather thanmerely tolerated interactions. For the design of

trustworthy robot interactions, this means that rather than compen-

sating for closer approaches with slower approach speeds, greater

distances and slower speeds should be maintained simultaneously

when handling potentially hazardous items, so situations where a

tradeoff would be needed can be avoided.

5.4 General Implications for Handover Tasks

Our findings underscore the importance of context-aware behav-

ioral adaptations for human-aware navigation in HRI. This means

that robots operating in spaces shared with humans should modu-

late their approach behavior as a function of the PDI of the objects

they carry. Interestingly, we observed slightly greater stopping dis-

tances and slower approach speeds for the empty gripper condition

(Baseline) than for the low-danger category. This can potentially

be explained by the appearance of the open empty gripper, which

multiple participants stated “looks a bit like it’s going to choke you.”

One solution would be to move the gripper closed when empty.

Importantly, designing for acceptance and trust in both private

and shared spaces requires focusing not just on what is technically

possible but on what is comfortable for and preferred by users. We

tailored our study to this goal by giving participants free choice

to set the approach parameters they found most appropriate. This

approach ensured that the findings reflect actual user preferences
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rather than imposed tolerances. While we did not observe a speed-

distance tradeoff, this does not disprove it. Instead, it indicates that

users prefer to avoid situations where such a tradeoff would become

necessary, particularly when dealing with hazardous items.

Beyond domestic settings, our findings can inform a range of

applications in robotic spaces. For example, robots in healthcare

settings could use similar adaptive behaviors when handing over

medical tools or assisting with patient care. In industrial environ-

ments, robots could dynamically adjust their approach parame-

ters to ensure worker safety and efficiency when handling poten-

tially hazardous items. For instance, when transporting a dangerous

chemical, even if technically entirely safe, robots should approach

more slowly and stop at a greater distance to prioritize user comfort.

More generally, for proxemics research, our study confirms that

object characteristics, such as their perceived danger, influence the

desired distance and approach speed. Traditional proxemics often

focus on the cultural [21], personal [25], social-context [71] or room

characteristics [73] but have yet to combine agents with objects.

Therefore, our research on cobots likely also extends and merges

research on PPS regarding objects [9] and PS regarding agents [13],

as both spaces are not deemed to be as distinct [31]. Objects and

their characteristics consequently influence proxemic interactions

and, therefore, should be considered in human-robot proxemics.

5.5 Limitations

We conducted our study in a laboratory equipped with a fully func-

tional kitchen.While this offers higher ecological validity compared

to a sterile lab or virtual environment, it remains a controlled lab-

oratory setup. Real homes may contain more variability, clutter,

or unstructured activity that could influence proxemic preferences

and user responses in ways that this study does not capture.

We used a ceiling-mounted Kinova Gen3 6DoF arm, which is

representative of a wide range of robotic manipulators. However,

the results may not generalize to robots with different forms, de-

grees of anthropomorphism, or motion characteristics. It needs to

be investigated how our results extend to different robot character-

istics or multi-arm robots in general. Moreover, different approach

trajectories, arm shapes, or motion smoothness could influence

perceived safety and comfort in handovers. Further studies with

alternative robotic morphologies are needed to explore this. Here, it

might also be relevant to see how danger levels add up across agents

in space, e.g., whether multiple cobots carrying dangerous objects

lower speed and increase distance in a multiplicative fashion.

Participants performed the task in a focused, distraction-free

context. While this allowed us to isolate the effects of perceived

object danger, it does not reflect common user behavior in actual

kitchen use. In reality, users might divide their attention across

multiple tasks and prioritize fluency or rely more on peripheral cues,

potentially affecting their sensitivity to robot proximity or motion.

To establish approach profiles with higher ecological validity, future

work should investigate how attention, task load, and situational

awareness influence proxemic preferences during handovers, for

which the values discovered in our study can serve as the baseline.

While grasping the item was entirely possible within our study

setup, we have not analyzed the user’s hand movement kinematics

or hesitation during the handover. We carefully designed the pro-

cedure to control for item presentation and interaction variability.

This decision allowed for cleaner comparison of approach behavior

but omits potentially valuable behavioral data that could reflect

trust or readiness. Future studies should record and analyze hu-

man grasping behavior, which could provide further information

in terms of hesitancy to initiate a handover with the cobot and

could potentially be used to adapt interaction. Future research may

want to look at the behavioral grasping parameters of the user

in a dedicated study that also controls for object orientation, for

instance, as a function of approach speed.

We saw that participants tolerated a relatively high approach

speed for the cobot, especially for the Low and Medium categories.

Future studies might explore wider or adaptive speed ranges to

investigate where these thresholds truly lie. However, this may

need more extended safety procedures than those already strictly

employed in our study. While participants were not shown the

full speed range directly, the preparatory session allowed them

to observe and test several speed settings. Still, not all may have

encountered the full behavioral range of the robot, especially the

minimum velocity, which may have influenced their internal refer-

ence points when adjusting the approach parameters. The ceiling

effect could be further attributed to the high predictability of the

robot’s trajectory. However, to maintain consistency in assessing

the impact of object danger, the trajectory shape was kept constant.

Investigating the influence of trajectory predictability in combina-

tion with varying danger levels, as well as potential learning and

habituation effects, is another valuable direction for future research.

Future studies may circumvent this limitation by presenting a set

of distances and speeds and asking participants for their comfort

level [72] or measuring physiological responses typically present

when PS is violated, e.g., a rise in electrodermal activity [29]. The

increase in trials necessary for our research questions would have

rendered the study impractical.

Our participants (𝑀 = 29.2, 𝑆𝐷 = 11.1) were rather young, with

75% of participants being 33 years or younger, and the majority held

a university degree (79% with Bachelor’s or higher). This may limit

the generalizability of our findings to older or less formally educated

populations. The participants’ ATI score of 3.84 (𝑆𝐷 = 0.84) is

near average (3.5 Franke et al. [17]), suggesting a relatively neutral

attitude toward technology. However, we did not analyse a potential

effect on proxemic preferences. Future studies should examine

whether such factors influence preferred speed and distance.

6 Conclusion

As robots will increasingly enter human living spaces and collab-

orate with humans, they need to adhere to human rules of social

behavior, in particular regarding their usage of space. We identified

a lack of holistic evaluations of human-robot proxemics concerning

the perceived danger of the objects they handle. To close this gap,

we conducted a user study (N=48) centered around a robot handover

situation with items of varying levels of perceived danger. We found

that higher perceived danger of an object consistently resulted in

slower preferred movement speeds and larger preferred stopping

distances. These preferred values for speed and distance can be

modeled as linear functions of the PDI with a reasonably good fit.
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These insights can help to develop adaptive robotic systems that can

maintain a good user experience in different interaction contexts.

Designers can also create customizable interaction settings and

provide a starting point for users to personalize their experiences

with robotic systems. Additionally, this knowledge is valuable for

education and training in HRI design since it emphasizes the impor-

tance of adapting interactions to user perceptions. In robotic smart

spaces, such as kitchens or healthcare facilities, our findings can

guide the design of systems where robots seamlessly share human

environments. By respecting spatial norms and adjusting behaviors

based on context, these systems can enhance the perception of

safety, efficiency, and overall user experience. Future work should

explore how these principles scale to multi-robot environments and

dynamic, multi-user settings.

Open Science

We provide all anonymized measurements from the study and the

Python and R analysis scripts in the supplementary material and

on the Open Science Framework: https://osf.io/v3ypb.
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