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Abstract
Understanding the intentions of robots is essential for natural and
seamless human-robot collaboration. Ensuring that robots have
means for non-verbal communication is a basis for intuitive and
implicit interaction. For this, we describe an approach to elicit and
design human-understandable robot expressions. We outline the
approach in the context of non-humanoid robots. We paired human
mimicking and enactment with research from gesture elicitation in
two phases: first, to elicit expressions, and second, to ensure they
are understandable. We present an example application through
two studies (N=16 & N=260) of our approach to elicit expressions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3713085

for a simple 6-DoF robotic arm. We show that the approach enabled
us to design robot expressions that signal curiosity and interest in
getting attention. Our main contribution is an approach to generate
and validate understandable expressions for robots, enabling more
natural human-robot interaction.
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1 Introduction
As robots become everyday companions, assisting with various
tasks, including those currently beyond our capabilities, this propels
us into a new era of human-robot coexistence, where robots implic-
itly become integral parts of our lives. Central to this is establishing
effective communication between humans and robots [53, 90, 100].
Verbal communication is a cornerstone of human-human interac-
tion [33], which can either replace or support non-verbal communi-
cations [73]. Humans use non-verbal cues for conveying emotions,
intents, and information [14, 77]. For robots, there are many ex-
isting approaches to creating expressions, yet, they focus on the
expression creation process rather than the understandability of
the expressions [48], which is essential for successful communica-
tion. In human-robot interaction (HRI), the expressions performed
by the robot must be understandable by users to support inter-
action. Yet, there is no approach that focuses on creating human-
understandable expressions to support human-robot interaction.

Previous research has shown that matching verbal and non-
verbal communication from robots can improve users’ perception
of robots [87]. Moreover, non-verbal communication aids in convey-
ing intentions, preferences, and emotional states, facilitating more
meaningful and intuitive interactions [89] and positively influences
both efficiency and robustness in collaborative tasks [13, 117]. To-
day, many expressions are in the domain of emotions [30, 51, 89, 92].
However, Jung [48] argues that when designing expressions for
robots, there needs to be a shift from making the robot “emotional”
to an understanding of how people interpret that behavior. While
we see that expressions are created with a wide range of different ap-
proaches (experts in specific fields [3, 76], motion tracking [44, 115],
or animation theory [44]), they are rarely understanding-centric,
applying them in rapid human-centered design cycles is restric-
tive and non-practical, and ensuring human understandability not
directly possible. On the other hand, gesture elicitation studies
allow the rapid generation of user-defined gestures by ordinary
people [111]. This approach is widely used in human-computer
interaction (HCI) [84, 93, 104, 105] and effective in creating intu-
itive user-to-device gestures by having participants create novel
gestures based on given referents. In contrast, others have shown
the applicability of gesture elicitation studies to create device-to-
user expressions [9, 34, 35, 88]. In this work, we build on prior
practices to outline a standardized approach that future research
can adopt, ensuring replicability in creating human-understandable
robot expressions.

We propose an approach with two phases (Expression Elicita-
tion and Expression Verification) to create validated human-under-
standable robot expressions based on prior approaches.We envision
that in the Expression Elicitation phase, participants first use their
own bodies to imagine how they would express something given
referents through non-verbal cues and second to relay their human
cues to a specific robot by performing, recording, and re-watching
the newly created expressions (given the robot’s form and size
variations). Inspired by Wobbrock et al. [111], we then propose
to cluster the resulting expressions, describe them using a taxon-
omy, and calculate occurrence scores for the resulting expressions to
generate potential expressions for the selected robot configuration.
In the Expression Verification phase, we then use a confirmatory

approach to verify the human understandability of the expressions
through participants’ interpretation of the displayed robot expres-
sion. We showcase our approach in an example study. By applying
our proposed approach, we created human-understandable expres-
sions allowing a 6-DoF robotic arm to perform expressions, which
users identified as curious behavior. In the first phase (N=16), we
elicited 128 robotic expressions based on eight referents. Using open
and axial coding, we found 13 distinct expressions. In the second
phase, we ran an online survey (N=260) to verify whether the 13
expressions are human-understandable using videos.

In this work, we present our approach to eliciting and validating
human-understandable robot expressions. We outline the approach
and showcase it with an example study. Most importantly, our ex-
ample study revealed that having users create robot expressions
for a robot arm leads to human-understandable expressions even
without humanoid traits. Thus, we conclude that this approach is
suited to design non-verbal expressions for robot arms. By applying
our approach in future work, we support expression generation
for different robots, contexts, and modalities. In return, this high-
lights the degree to which this approach is generalizable. Thus,
applying this approach to different robots in different contexts will
provide deeper insights into how robots can express themselves
understandably and which commonalities and differences exist in
understandable non-verbal human-robot communication.

2 Related Work
Here, we assess existing literature on non-verbal communication
in human-human and human-robot interactions, as well as gesture-
elicitation studies.

2.1 Non-verbal communication in
Human-Human Interaction

Non-verbal communication is a vital component of interaction, as
66% to 87% of information in face-to-face interaction is conveyed
this way and often overshadows verbal communication [14]. We
use it to communicate emotions, convey interpersonal attitudes,
and manage conversations [60]. It also plays a significant role in
maintaining long and effective interpersonal relationships [98].
Non-verbal communication includes all bodily and facial expres-
sions [26]. Gestures are one vital part of non-verbal communica-
tion [37]. Non-verbal communication is an essential part of human-
human interaction, and especially gestures have a huge potential
to express intentions and to show attention while listening [36]
and can often convey even unspoken thoughts [37]. Additionally,
humans are also good at understanding the gestures from other
people subconsciously [23, 26, 108].

However, interpreting the meaning of others’ gestures is sub-
jective and multifaceted [67]. Often, specific gestures only make
sense given a specific context and can be interpreted differently in a
different context [62]. For example, nodding can be used to confirm,
agree, submit, or give permission [75] and, thus, also be interpreted
to have these different meanings given a different context. Conse-
quently, when asked what a gesture means without giving context
multiple answers can be correct.
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Non-verbal expressions enhance conversational flow, offering a
simple, non-intrusive, and easily understandable means of communi-
cation. People interpret gestures within the context of ongoing conver-
sations and recognize their nuanced meanings. Given the significance
of non-verbal communication in human-human interactions, we advo-
cate for a similar level of importance in human-robot communication.

2.2 Human-Robot Communication
In the context of HRI, it also has been shown that verbal and non-
verbal communication is possible in both directions [66]. Similar
to humans, robots can use expressions to convey their emotional
state [30]. For example, Deshmukh et al. [28] found that changing
the speed and amplitudes of these gestures affect user perception in
terms of Animacy, Anthropomorphism, Likeability, and Perceived
Safety, measured through the Godspeed scale [6]. Cabibihan et al.
[16] conducted a study with a humanoid robot mimicking humans
and found that humans, in general, understand what the robot
tried to express. Robots using gestures increase the willingness of
users to engage with them [91]. It has been found that matching
gestures and verbal output increased participants’ likeability of
the robot and willingness to interact [54, 87]. Humans are more
willing to approach robots that use gestures [91]. In collaborative
tasks, robot gestures increase communication and understanding
between the two parties and can even lead to the users perceiving
a lower workload [63].

Researchers have investigated how to improve interaction with
non-humanoid robots. Although humanoid robots are often the way
how we envision future robots to look like due to their higher levels
of anthropomorphism, non-humanoid robots will be an essential
part of future interaction. Due to the various areas of application for
robots, it is often necessary to choose a robotic design fitting into
the environment, e.g., a humanoid robot supporting us with kitchen
tasks would stand in our way, but a robotic arm from the ceiling
could achieve the same results without being in the way [72]. Even
slight changes in the appearance of robotic arms can lead to higher
levels of anthropomorphism [97]. Furthermore, humans perceive
even inanimate objects as social entities, attributing emotions, inner
states, and personality to them [58, 78]. Non-humanoid robots are
able to express emotions [47], the will to collaborate [20], and
can be used to support interaction between humans [46, 76] using
gestures. It is crucial for robots in the various aspects of our lives to
communicate their intent so that humans can make more informed
decisions about their interaction with them [118].

Curiosity, a foundational element of cognition [52], drives ex-
ploration, learning, and social connections in humans [74, 113].
It serves as an intrinsic motivator to reduce uncertainty and nov-
elty [94]. Humans express curiosity through various different ex-
pressions and behaviors [52], and also robots behavior can be per-
ceived as curious [18, 30]. While these studies offer solutions for
expressive robotic gestures, not much is directed toward curiosity,
and many of the gestures are developed based on existing research
on human gestures or even ambiguously [20, 30, 54, 61, 76], which
is generally harder to implement on a non-humanoid robot. In our
example study, we focus specifically on the expression of curiosity
by a robot and generate our gestures through an elicitation phase.

Effective communication is essential in HRI, particularly in collab-
orative scenarios where mutual understanding is crucial. Robots that
employ gestures positively impact collaborative tasks. Therefore, en-
hancing HRI involves using non-verbal communication that humans
can implicitly understand.

2.3 Expressions in Human-Robot Interaction
Expressions are a means of communication between humans and
robots, as they play a vital role in facilitating effective and intuitive
interaction between two parties [89, 92]. They can convey infor-
mation, intentions, and emotional states to humans. By mimicking
and utilizing human-like gestures, robots can enhance their abil-
ity to communicate and engage with humans in a more natural
and intuitive manner. Non-verbal communication aids in convey-
ing intentions, preferences, and emotional states, facilitating more
meaningful and intuitive human-robot interactions [89]. They can
make robots appear more polite [59], improve task performance
in human-robot collaboration [13], and convey affection through
changes in proxemics, color, sound, and kinematic properties, which
affects the emotional valence of users [8, 96]. Most current studies
focus on designing movements that convey emotions and whether
humans can correctly interpret these emotions rather than examin-
ing the gestures classified by Kendon [51].

The creation of expressions for robots is currently performed
with various different methods [112]. Currently, expressions are
being created through automatic pipelines [27, 55, 95], through
combination and mapping of predefined motion sets [101, 116], the
usage of motion capturing data [12, 43, 71, 82, 83], in applicable
fields (e.g., humor, animation, choreography) expert knowledge and
design processes [3, 76], a combination out of experts and motion
capturing data [79], or animation design theory [46, 81]. Especially
methods using motion-capturing data often imitate actual human
gestures, proposing that robots should communicate non-verbally
exactly like humans. Generating this data or gaining knowledge
from experts is often costly or unfeasible. Many also use LABANs
notation of human dance movement [106] to describe and generate
movement for mostly humanoid robots [1, 15, 56, 86], segmenting
expressions into primitives. Automatic labeling approaches show a
strong correlation with expert analysis [15], making this a suitable
approach to generate anthropomorphic expressions.

In summary, expression creation typically relies on motion tracking
data, expert knowledge, or animation theory, which can be time-
consuming and costly. Furthermore, these methods may not guarantee
that humans easily understand the resulting expressions. In general,
qualitative studies are underutilized in HRI research [45].

2.4 Gesture Elicitation
With the seminal work by Wobbrock et al. [111], user-defined ges-
tures for human-computer interaction became the norm for design-
ing gesture inputs for today’s computing systems. Recent literature
reviews found that over 267 gesture elicitation studies have been
conducted [103, 104]. Although originally planned for eliciting hand
gestures as input for interactive systems, the core idea of gesture
elicitation studies can be used with different body parts [21, 32]
and has also been used to create gestures for drones [9, 34]. In
gesture elicitation studies, many participants create multiple single
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gestures, given a referent. Originally, a referent is one feature for
which the participants should create a new gesture. The method
then proposes to merge similar gestures, calculate an agreement
score for the gestures for each referent, and then choose one differ-
ent gesture with the highest agreement score for each referent. On
average, studies use 16 referents and collect 723 gestures from 25
participants [103].

So far, gesture elicitation studies have mainly been used to map
gestures to device functionalities. In the following, we discuss and
present how we apply knowledge from gesture elicitation studies to
enable researchers to create robot expressions through a user-centered
approach. This could spark a new direction for expression elicitation
in HRI.

3 Research Approach to Elicit Robot
Expressions: A Research Plan

We envision a research plan to create human-understandable ex-
pressions for robots easily and in a user-centered way, see Figure 2.
This method uses a two-phase approach and can be applied to mul-
tiple domains where creating understandable robotic expressions
is required.

3.1 Approach Overview
Humans’ expressions are mostly intuitively human-understandable
[51]. However, not all robot form factors can directly mimic human
gestures as they do not resemble typical human bodies. To bridge
this gap, we employ a two-phase approach containing an Expression
Elicitation and Validation phases.

First, in the Expression Elicitation phase, participants enact ex-
pressions with their own bodies, explaining their thought processes.

First Phase – Expression Elicitation

Second Phase – Expression Verification

Open Coding

Calculate Agreement Score

Understandable Expression Set

Expression Verification Study

Open & Axial Coding

Taxonomy Categorization

Elicited Expression Set

Expression Elicitation Study

Figure 2: Procedure of creating human-understandable robot
expressions, divided into two phases; Expression Elicitation
and Expression Verification leading to a final understandable
expressions set.

This phase is strongly influenced by the well-established method of
gesture elicitation from Wobbrock et al. [111] and others [34, 84].
Next, participants should create corresponding robot expressions,
keeping their physical gestures in mind. We propose to ensure that
robot movement manipulation is user-friendly, allowing partici-
pants to adjust joint configurations manually and easily. Afterward,
participants can view and iterate over their newly created robot
expression until they match their envisioned expression. However,
in contrast to most gesture-elicitation studies, we do not need to cre-
ate a different expression for every referent; humans can map (and
do map) singular expressions to different meanings but differentiate
them with contextual information.

For the expression Expression Verification phase, we suggest ask-
ing for the participants’ unbiased opinions on what they think the
robot expressed, similar to other practices [9, 35, 88]. This second
phase is to confirm that an independent sample of participants
correctly matches the expressions created in the first phase to their
meaning. Thus, we suggest asking participants to interpret the ex-
pression as the first thing of the phase without the possibility of
them seeing other information from the subsequent questions. In
order to mitigate potential biases in the measurements, we recom-
mend choosing a between-subject study design [22, 39]. Finally,
we can calculate which expressions were generally perceived to
express the same things as the original referent asked about.

3.2 Goals and Requirements
As robots become companions for different tasks in daily life, it is
important to understand how users understand and perceive the in-
teraction with robots. Yet, a general understanding of human-robot
interaction is affected by the wide range of robot configurations
and form factors. This heavily impacts communication types that
are typically linked to a specific body configuration. However, it is
unclear how this bodily communication would extend to the differ-
ent robot form factors. To address these challenges, three authors,
with experience in HRI discussed and agreed on the following set
of goals and requirements. These requirements were grounded in
existing literature on gesture elicitation and HRI, for developing
human-understandable robot expressions, the foundational litera-
ture for the requirements is cited in each goal. With these goals, we
aim to facilitate the creation of human-understandable expressions
across diverse robot configurations. While there are also additional
important criteria (e.g., explainability, transparency), these might
relate more to the evaluation phase of the generated gestures or
are more context-dependent.

(1) Universal: The method should be universally applicable,
working seamlessly with different robot types. The need for
universality in robot design stems from the wide variety of
robot morphologies and applications, requiring adaptable
communication methods [44, 99]. Universality ensures that
expressions are not constrained by specific physical configu-
rations or cultural contexts [99].

(2) Generalizable: The method should enable the generation
of expressions for any topic or domain. Similarly to gesture
elicitation studies, where it is beneficial to have the same
gesture set across different devices [29], robots are being
used in many different domains, where humans interact
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with various robots using different mental models [114]. To
ensure effective communication, it is essential to design ro-
bot expressions that are understandable across contexts [42].
Gesture elicitation’s referents are topic agnostic and allow
to create expressions for any topic based on user prefer-
ences [103].

(3) Accessible: Researchers, regardless of their available re-
sources, should find the expression creation process straight-
forward, efficient, and capable of yielding human-under-
standable expressions. Prior work suggests to choose a rep-
resentative user participant group to avoid sample bias, en-
sure replicability for HRI studies, and highlights the value
of user-friendly interfaces and intuitive methods for behav-
ior programming, which empower diverse users, including
those with limited resources, to engage in meaningful robot
design processes [7, 17].

(4) Comparable: The results should be standardized and com-
parable across all studies utilizing this approach, facilitating
a comprehensive analysis of the key elements in an expres-
sion’s effect [31].

(5) Validated: The created robot expressions should be easily
and accurately interpreted by a broad and diverse user group,
ensuring their effectiveness in communication. Validation
is a critical step in HRI design, as it ensures that the devel-
oped expressions align with the intended meaning and are
accessible to diverse users [49, 64].

3.3 Blending Existing Approaches
To establish a foundation for generating and evaluating expressions
or gestures, we explored several existing approaches. For expression
generation, we considered methods such as predefined motion
sets [101, 116], motion capturing data [12, 43, 71, 79, 82, 83], expert
knowledge [3, 76], or animation design theory [46]. In contrast,
HCI research often favors user-centered techniques like gesture
elicitation studies [104], focus groups [50], mimicking [19], or role-
play [4, 68]. We draw from their insight to design the first phase of
our approach: Expression Elicitation. In traditional gesture elicitation
studies, users are asked to generate gestures they want to perform
on a device to get a certain output. If many users come up with a
similar idea of how a gesture for one action should look like, this is
an intuitive gesture. We use this idea to let users create gestures
that they want the robot to perform, instead of themselves. The
intuition is the same; if many users agree that one robotic gesture
means a certain thing, that gesture is an intuitive gesture.

As Wobbrock et al. [111] highlighted in their seminal paper,
validation is an important next step after elicitation. This aligns
with other methods like scale development [10]. However, it is not
always common practice to validate new sets [104]. Consequently,
we build the verification set directly into our approach as the second
phase: the Expression Verification. Here, we propose to use a large
set of participants and ask, without priming them, what they think
a robot wants to express doing one certain expression. If the large
majority of participants understand one expression with the same
meaning, this expression is a reliable way to communicate the goal,
with which the expression was originally created.

3.4 Choice of Participants
As bodily expressions are often part of implicit memories, which the
individual cannot explicitly articulate in words or descriptions, We
envision that during the Expression Elicitation, participants interact
physically with the robots, allowing them to manipulate the body
of the robot, or to use their own bodies as a tool to articulate the
expressions. Thus, the phase should ideally be conducted as a lab
or in-situ study. Depending on the explicit context for which our
method should be used to create new expressions, both domain
experts and regular users could be included in the elicitation process.
Domain experts have deeper knowledge and background, leading
to more informed opinions. However, non-verbal expressions are
inherently human; thus, regular users also have an understanding
of how they would express certain concepts.

We propose to counteract the limited participant pool from the
first phase real-world study by conducting the the second phase as
a large scale online survey. In an online survey, video recordings
of the expressions will be necessary to convey the newly designed
expressions to the participants.

3.5 Choice of Referents
In gesture elicitation studies, a referent is the target or subject of
the designed gestures [111]. In these traditional studies, researchers
aim to understand the relationship between a referent and gestures
to design more effective and user-friendly interfaces. In traditional
gesture elicitation studies, each referent has to have one distinct ges-
ture associated with it. This contrasts our case; here, the referents
are used to generate expressions for specific topics. However, they
do not need to be unique, as in human-human communication, we
often use the same non-verbal communication patterns for multiple
different interactions, and the conversation partner can infer from
the context what is meant by that expression. Thus, the choice
of referents does not need to reflect the exact set of expressions
one wants to create with this approach. Yet, the referents serve
as a possibility for designers to instruct users to allow two design
expressions with a use case in mind. We propose to first define the
construct for which expression should be designed and create the
referents based on factors of that construct. In detail, each referent
should prompt the user to perform a non-verbal expression for a
certain topic. We suggest using additional control referents. The
aim is to create expressions that are unrelated or contrasting to the
domain of created expressions for verification.

3.6 Analysis and Taxonomy: Finding
Commonalities in Expressions

To condense findings from the expression elicitation phase, we
suggest a two-step coding process for the robot expressions created
by participants in the first phase. First, we recommend using open
coding to identify commonalities and subtle differences among
expressions, preserving as much expression information as possi-
ble. Next, we propose clustering similar expressions by referent
through axial coding, with the possibility of similar clusters emerg-
ing across different referents. Initially, this will yield numerous
unique expressions, each described in detail using our taxonomies.
However, in subsequent stages, we advocate for condensing these
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Table 1: Taxonomy for human-understandable robot expressions. The taxonomy includes six dimensions.

Dimension Category Description Example

Speed
Slow
Normal
Fast

Subjective assessment of expression speed. The default
speed is labeled as normal, while expressions significantly
faster or slower are classified as fast or slow.

An expression is fast if the movement is noticeably faster
than other expressions (e.g., the end-effector rapidly turns
from left to right).

Complexity
Single
Compound

Describes whether an expression consists of a single
motion or a combination of multiple motions (compound),
which can either involve multiple sequential movements or
simultaneous combinations of different movements.

Vertical end-effector movement while simultaneously
moving the body from left to right would be a compound
expression, while only vertical movement with the
end-effector would classify as single..

Flow
Continuous
Discrete
Combined

Classifies whether an expression involves continuous,
uninterrupted motion or discrete, non-continuous motion.
Combined expressions combine both continuous and
discrete movements.

A discrete expression involves the robot stopping at
multiple points (e.g., the end-effector moves around using
the full body, stops at multiple points, to then rotate the
end-effector).

Binding
Environment
Object
Person

Assesses whether the robot’s face is anchored toward a
specific object or person or moves independently
(environment).

Classifies the point of interest of the expression. A nodding
expression can be targeted towards an object or person, or
it is a general expression with no direct point of interest.

Dynamics
Dynamic
Static

The robot’s movement can either be static or dynamic.
Dynamic should be further specified in the context of the
expression’s target.

An expression is static if all joints, except for the ones
needed for the expressions, are not moving. Dynamic
describes expressions with movement involved (e.g.,
moving away from a target, moving towards a target).

Focus Focused
Unfocused

Characterizes the relationship between the communication
node and the target, which can be either focused on the
target, tracing it, or unfocused.

The communication node refers to the point a user would
identify as the robot’s “face” (e.g., the end-effector for robot
arms).

expressions into their core ideas. To achieve this, we suggest clus-
tering groups by their primary components into what we term
expressions. Once again, the same expressions may appear across
different referents. From this point forward, we suggest analyzing
the expressions independently of the referents. These expressions
should clearly convey some internal state of the robot. To describe
and distinguish the emerged expressions, we propose to use our
taxonomy with six dimensions: (1) speed provides a subjective
assessment of the expression speed, (2) complexity distinguishes
single motion or combination of motion expressions, (3) flow de-
scribes whether a gesture is continuous or discrete, (4) binding
describes towards what the robot’s face is anchored, (5) dynamics
describes the movement of the robot, and (6) focus characterizes
the relationship between the robots face ands target. Table 1 shows
all dimensions with its categories, descriptions, and examples. De-
pending on the robot, more dimensions can be added to further
describe expressions, e.g., using the LABAN notation to describe
dynamics more fine grained [106]. This taxonomy makes it easier
and more transparent to decide which expressions are the same
and, thus, need to be merged or which are different from each other.

3.7 Measurements
We recommend employing established domain-specific question-
naires whenever feasible in both study phases. In the first elicitation
phase, these questionnaires serve to gauge participant satisfaction
with the created expressions and identify anomalies. More impor-
tantly, the questionnaire should be integrated and statistically eval-
uated in the second expression verification phase. Additionally, we
suggest asking about the user perception of the chosen expressions
using a subset of questions proposed by Rzayev et al. [85], as this

can provide additional properties of each expression. Lastly, and
most importantly, participants of the second phase should be asked
what they think the robot expressed without biasing them with any
previous domain information.

3.8 Metrics
We propose one metric each for the Expression Elicitation and Ex-
pression Verification. In the first phase of our approach, we want to
determine which gestures are suggested by how many participants.
With the occurrence score, we can later evaluate whether expres-
sions suggested by more participants are also better understood.
In the second phase, we want to measure how much participants
agree on one expression expressing one specific thing. For this, we
propose calculating the qualitative response accuracy.

To measure the agreement for the Expression Elicitation, the
agreement score (A) [111] and agreement rate (AR) [102] do not
apply to our case. The reasoning for this is three-fold: (1) We do not
need to find one extremely well-fitting expression for one referent
but rather find out which expressions are understood in which way.
The same expression can be the best fit for multiple referents, and we
encourage diversity in expressions. (2) The results of this method
should state how confident humans understand each expression. (3)
Users can propose multiple candidates (this is a common issue [69]).
However, AR penalizes diversity due to squaring the ratio. For
this reason, we favor a linear relationship to calculate a quality
metric. For this, we propose to rate each expression in a given set
of expressions of one referent by an occurrence score (𝑂𝑆):

𝑂𝑆𝑅𝑖 ,𝐸 𝑗
=

|𝐸 𝑗 |
|𝑅𝑖 |

, 𝐸 𝑗 ∈ 𝑅𝑖 , (1)
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With this, we can calculate the OS for all expressions 𝐸 𝑗 per referent
𝑅𝑖 . An 𝑂𝑆 of 1 indicates that only one expression was envisioned
for a given referent by participants, while 1

𝑁
denotes the lowest

possible score, where 𝑁 distinct expressions were proposed once.
An additional approach to understanding the diversity and elic-

itation saturation is the consensus-distinct ratio, which was intro-
duced by Morris [69] for gestures. Here, the idea is to count all
gestures that are named more often than a given threshold. Here
Morris [69] proposes a default threshold of ≥ 2. We argue that
this metric scoring low could have two potential reasons. (1) The
saturation point of gestures has not been reached. Thus, more par-
ticipants are needed to fully understand potential expressions for
this referent. (2) The referent itself lacks specificity, and thus, con-
sensus is hard to reach. Other metrics, as max-consensus [69] or
CR [102] are not applicable to evaluate our case of expressions as
they tend to find well-separable outcomes, which we do want to
force onto our resulting set of expressions.

In line with Equation 1, we propose to quantify the perceived
qualitative response accuracy (𝑄𝑅𝐴) for the Expression Verification.
Here, to calculate 𝑄𝑅𝐴 by textual responses from participants who
were asked to describe the expression. Through open coding, the
researchers then need to determine if the response matches the
intended meaning of the expressionwhile respecting the meaning of
the original referent. Here, we count the fitting labels as𝐶+, and the
not-fitting ones as 𝐶− . As a result of respecting the initial referent,
an expression can have multiple 𝑄𝑅𝐴’s. Thus, we calculate 𝑄𝑅𝐴 as:

𝑄𝑅𝐴𝑅𝑖 ,𝐸 𝑗
=

|𝐶+
𝐸 𝑗
|

|𝐶+
𝐸 𝑗
| + |𝐶−

𝐸 𝑗
| , 𝐸 𝑗 ∈ 𝑅𝑖 , (2)

A high𝑄𝑅𝐴 means the human-created expression leads to a human-
understandable expression.

4 Example Process of the Two Phases
We present a full cycle of this approach. First, we conducted an
expression elicitation phase to create expressions to signal curiosity.
Secondly, we conducted an expression verification phase to confirm
whether the created expressions were understandable.

4.1 Example Expression Elicitation Study
4.1.1 Study Design. We conducted a lab-based expression elicita-
tion study with 16 participants, allowing them to create and refine
the robot expressions directly. Participants were provided with
eight different referents. They first acted out the gestures with their
bodies, explaining their thought process, and then translated these
expressions onto the robot. This approach helped them mentally
align with how they would express each referent. We used Latin-
square ordering to counterbalance the referents’ presentation order.

4.1.2 Apparatus. For our study, we used the MyCobot 280 robotic
arm from Elephant Robotics. We chose this specific robot because it
is lightweight and small, making it easy for participants to manipu-
late its movement with their hands. Its lack of anthropomorphic
traits offers a wide range of possible degrees of freedom with its
movement and does not prime participants into just copying their
own, e.g., head movement.

Table 2: The eight referents we used to prompt users to create
expressions. We showed these referents to users and then
asked them to create an expression the robot would do to
match the descrption.

Ref. Description

R1 Imagine a non-movable object on the table in front of you.
Without touching it, how would you visually observe the
object to intake more information?

R2 Imagine a constant sound in the corner of the room. How
would you listen to the sound to intakemore information?

R3 Imagine a non-movable object on the table in front of
you, but you don’t understand how it works (e.g., why
a computer screen isn’t black). How would you reduce
uncertainty about this object?

R4 Imagine someone is explaining something to you. How
would you show understanding and acknowledge the
information?

R5 Imagine someone starts talking to you. How would you
use an open posture to signal that you are listening?

R6 Imagine someone is talking to you. How would you ex-
press that you are engaged and attentive?

R7 Imagine you see something scary. How would you back
away in fear?

R8 Imagine someone starts talking to you. How would you
use a closed posture to signal that you are rejecting what
they are saying?

To record and play the robot’s joint positions and movements,
we created a simple Python application using TKinter for the GUI,
the MyCobot Python library, and ROS Noetic. The application al-
lowed the study conductor to record key points of the robot’s joint
positions, shown by the participants, into one motion. The created
motion could then directly be played back to the user and allowed
for direct refinements. The study conductor handled the creation
tool while the participants gave instructions on how they wanted
the robot to move. Furthermore, we video-recorded the participants’
movements and explanations for later analysis.

4.1.3 Referents. Based on core ideas from related work on curi-
ous behavior, we selected six curiosity-related referents and two
control referents for our study. Here, we looked into research on
observable curious behavior for adults, children, and animals, as
these behaviors are usually well-known to users. We then formu-
lated the referents in a way that users would be prompted to show
these behaviors, see Table 2. (1) Visually intake more information
in unfamiliar environments [38], (2) Adapt sensor positioning to
intake sound better [2, 25], (3) Construct knowledge about un-
known things [11, 74, 107], (4) Express interest in other people to
learn more about them [2], (5) Express will to listen [2], and (6)
Show attention and engagement to express interest [24]. From this,
we constructed the six curiosity referents (R1-R6) and two control
referents (R7, R8).

4.1.4 Task. For each of the eight referents, we instructed partic-
ipants to create an expression for the robot by first acting it out

https://www.elephantrobotics.com/en/mycobot-en/


CHI ’25, April 26–May 01, 2025, Yokohama, Japan Leusmann et al.

Table 3: Description of the 13 resulting robot expressions. In
referents shows which referents created each expression.

Exp. In Ref. Description

E01 R1, R3 Moving closer with end-effector and scanning1 the
object in one axis.

E02 R1, R3 Moving closer with end-effector, continuously mov-
ing around the object and looking.

E03 R1, R3 See E02, but doing the movement multiple times
sequentially looking at the object from two sides.

E04 R2 Moving forward, scanning environment by turning
the end-effector horizontally to both sides.

E05 R2 Moving forward, facing one spot in environment.
E06 R2 Repeatedly moving forward, looking at one spot in

the environment.

E07 R4, R5, R6 Nodding with the end-effector
E08 R4, R5, R6 Nodding with the end-effector with body/end-

effector movement in between.
E09 R5, R6 Showing attention through body movement.

E10 R7 Bodymoving back, end-effector focused on a target.
E11 R7 Body first moving forward then back, end-effector

focused on a target.

E12 R8 End-effector turning horizontally to both sides mul-
tiple times (shaking head).

E13 R8 Body turning and moving away from the target.

themselves and then replicating it on the stationary robot. The only
constraint was that they could not move away from their position,
as the robot was also mounted stationary. After acting out the refer-
ent, participants physically positioned the robot’s joints to certain
key points and then asked the study conductor to save the position
when they were satisfied, stating their preferred duration, speed,
and pauses for each movement. The tool allowed participants to
preview, modify, and refine their expressions, including undoing
points or adjusting the speed.

4.1.5 Procedure. The study began by welcoming the participants,
introducing the study objectives to them, a request for their con-
sent, and a demographics questionnaire. Then the study began with
two tutorial referents (the emotions happy and sad) to explain and
show participants the process of recording gestures with the robot.
For the first tutorial referent, the study conductor demonstrated
the process while explaining their thought process. In the second,
participants performed the task independently with guidance. After
completing the tutorials, participants moved on to the eight study
referents, creating and refining one expression for each until they
were satisfied. After recording the expressions, we played them
back to participants in a random order, asking them to rate each
one using five questions. We formulated these questions based on
curiosity literature, reflecting the pillar from which we created our
referents: “I perceived the system to be very [engaged, attentive, ex-
plorative, information seeking, curious]”. Participants could watch
the robot’s performance as many times as they wanted. After rating
each expression, participants moved to the next without seeing the
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Figure 3: Distribution of expressions in six taxonomy cate-
gories (c.f., Table 3).

original referents. Finally, we gathered feedback, addressed any
questions, and thanked them for participating.

4.1.6 Participants. We recruited 16 participants (male = 10, female
= 6) via convenience sampling. Their education levels included
master’s degree (11), bachelor’s degree (3), and some college but
no degree (2). Their age ranged from 20 to 35 (𝑀 = 27.50, 𝑆𝐷 =

4.26). Our participants had three different nationalities: German
(12), USA (3), and Canada (1). The mean Affinity for Technological
Interaction (ATI) [109] score across all participants was 4.61 (𝑆𝐷 =

0.68, Cronbach’s 𝛼 = 0.85). On average, the study took 45 minutes,
and we reimbursed participants with 10€.

4.1.7 Analysis. Three authors used open coding to identify and
merge similar expressions, initially coding 128 expressions and
condensing them into 37 distinct expressions. We then applied
axial coding to further consolidate these into 13 unique expression
categories, based on how the robot moved and what it conveyed.
The final expressions are documented in the Supplemental Material.

In detail, first, three researchers iteratively coded the robot ges-
tures, observing that participants often perceived the robot’s end-
effector as a face, as reflected in their reactions and think-aloud
comments. We established the front as representing the direction
of the object in the referent, while other movements were catego-
rized as body gestures (e.g., extension, contraction, leaning). This
open-coding process yielded 37 expression, grouped by the referents,
though the same expression could appear across multiple referents.

In the second step, we condensed 37 expressions into 13 ex-
pression categories using axial coding. In detail, we categorized ex-
pressions based on their primary components using our proposed
taxonomy. This process unified variations in movement, which ap-
peared repeatedly across different referents, see Table 3. In this axial
coding phase, we focused more on the “core idea” of each created
expression instead of coding every single movement (e.g., the core
idea could be that participants used the end-effector to let the robot
do a nodding motion. The axial coding phase would combine all
nodding expressions, independently whether the expression was
performed with the robot straight or contracted).

1The robot did not have a camera or eyes; however, every single participant in our
first study phase assumed the end-effector of the robot to be a head.
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4.1.8 Results. Each referent had 16 resulting expressions. This
results in 8 × 16 = 128 expressions. Which we reduced into the
final expression set of 13 expressions, see Table 3. Moreover, we
classified each resulting expression based on our taxonomies into
six categories. Figure 3 displays the distribution.

Occurance Score (𝑂𝑆). We calculated the𝑂𝑆 for every expression,
see Table 4. The mean 𝑂𝑆 is 36.5 (𝑆𝐷 = 15.42). E10 received the
highest 𝑂𝑆 with 69% while E08 received the lowest 𝑂𝑆 with 12%.

Gesture Ratings. We found that all six created curious expressions
were perceived to be significantly more curious than the two control
expressions and did not find any anomalies (See Section 7 and the
supplemental material for results).

4.2 Example Expression Verification Study
We continued the second study with our set of 13 expressions
(E01–E13). In the following, we describe the process of the ex-
pression verification phase. Please see videos of all expressions in
the Supplementary Material.

4.2.1 Study Design. We conducted a between-subjects design on-
line survey to confirm the expressions are understandable (N=260).
Thus, each participant saw one video of the robot performing one
expression, interpreted it, and completed a questionnaire.

4.2.2 Apparatus. To display the robotic expressions, we filmed
each of the 13 expressions from two angles: the front, to simulate
the participant’s view, and the side, to better illustrate the depth
of movement (see Figure 4). For expressions E01, E02, and E03,
we included a Rubik’s cube to show in which object the robot
is interested. For the remaining expressions, the robot interacted
directly towards the camera.

4.2.3 Questionnaire. We first asked participants to read an intro-
duction to the robot’s non-verbal communication and then watch a
video of the robot performing an expression. We then asked them

Table 4: Calculated 𝑂𝑆 (c.f., Section 3.8) in rounded percent
(%) for each expression-referent combination. The same ex-
pression could occur over different referents. For example,
from all the proposed expressions in R1 25% were E01.

Expression Referents (𝑂𝑆)

E01 R1=25, R3=38, R4=19
E02 R1=38, R3=25
E03 R1=38, R3=38
E04 R2=38
E05 R2=44
E06 R2=19
E07 R4=62
E08 R4=19, R5=38, R6=50
E09 R5=50, R6=12
E10 R7=69
E11 R7=31
E12 R8=56
E13 R8=44

(a) E02: Displaying the robot showing interest in an object.

(b) E10: Displaying the robot backing away in fear.

Figure 4: Two example expressions from our setup to demon-
strate the 13 expressions to the participants of the verifica-
tion study in video form.

to describe what they believed the robot expressed briefly. We en-
sured participants had to watch the video by removing the button
to continue the survey until the video ended. Next, participants
rated the robot’s movement using VAS sliders for ten questions,
with sliders ranging from 0 (Strongly Disagree) to 100 (Strongly
Agree) and no numbered ticks, as these have been shown to yield
more precise responses [65, 80]. Participants could rewatch the
video as needed. We then asked to which extent the participant
agreed with the following questions. (1) I perceived the gesture to
be very engaged. (2) I perceived the gesture to be very attentive. (3)
I perceived the gesture to be very explorative. (4) I perceived the
gesture to be very information-seeking. (5) I perceived the gesture
to be very curious. (6) This gesture is very understandable. (7) This
gesture is very effective in communicating the robots’ intent. (8)
This gesture is very intrusive. (9) This gesture is very noticeable.
(10) This gesture is very disturbing.

4.2.4 Participants. We recruited 289 participants via Prolific, ex-
cluding 3 for failing attention checks and 26 for describing only the
robot’s movement instead of its interpretation1, leaving 260 partici-
pants (female = 131, male = 128, non-binary = 1). We ensured gender
and nationality balance in our between-subject design, with each
1The participants were clearly instructed to state their interpretation and not describe
movement

https://www.prolific.co/
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Table 5: Calculated qualitative response accuracy (𝑄𝑅𝐴) (c.f.,
Section 3.8) in rounded percent (%) for each expression-
referent combination. Each value is the percentage of how
often an expression was described with a matching label for
a referent. As multiple expressions could arise from one ref-
erent, one expression has a separate matching score for each
expression-referent combination. 100% means that every sin-
gle label given by participants in the second study is a fitting
label for its referent. One column can be read as follows: To
express R1, the expression E01 was correctly detected by 75%
of participants.

Expression Referents (𝑄𝑅𝐴)

E01 R1=75, R3=75
E02 R1=86, R3=86
E03 R1=94, R3=94
E04 R2=3
E05 R2=7
E06 R2=15
E07 R4=96, R5=96, R6=100
E08 R4=88, R5=88, R6=88
E09 R5=80, R6=80
E10 R7=29
E11 R7=13
E12 R8=73
E13 R8=21

participant rating one of 13 expressions, resulting in 20 responses
per expression. Participants, aged 19 to 68 (𝑀 = 34.60, 𝑆𝐷 = 9.90),
included 209 full-time and 51 part-time employed individuals. They
came from over 45 countries, with the highest numbers from the
UK (18), Portugal (16), South Africa (15), Spain (14), Netherlands
(13), Italy (12), Hungary (12), Ireland (11), Australia (10), Canada
(10), Greece (10), and Mexico (10). On average, participants took
3.99 minutes (𝑆𝐷 = 1.77) to complete the survey and watched the
video 2.98 times (𝑆𝐷 = 3.33).

4.2.5 Analysis. We utilized open coding for each expression de-
scription, iteratively refining the main component for each state-
ment and reaching a consensus on a single label. However, some
participants suggested that the robot expression could convey mul-
tiple meanings, leading to multiple labels within the final code for
one expression. This process yielded 68 unique labels and 333 in
total across 260 descriptions. Subsequently, we grouped these labels
into 12 distinct code groups for further analysis. Documentation of
this coding process is available in the Supplemental Material.

4.2.6 Results. In the following, we report our results for the sec-
ond study phase. This includes results regarding the expression
descriptions and results of the questionnaires.

Expression Descriptions. In total, we collected 333 labels from the
260 gesture descriptions across 68 unique labels. We found 12 over-
arching code groups, further categorized into four themes. Figure 5
displays the distribution of the code groups for each expression. We
then marked each code group as either matching or not matching,

depending on whether the understood intent matches the originally
proposed intent by the referent, to later calculate the 𝑄𝑅𝐴.

The main themes we found are (1) Exploratory Expressions, (2)
Negative Expressions, (3) Positive Expressions, and (4) Interactive
Expressions. The theme Exploratory Expressions includes the labels
task evaluation (52) and curiosity and interest (31). These groups
include labels like “assessing task”, “examining”, or “curiosity”. The
Negative Expressions theme include the labels negative emotion (6),
negative social interaction (13), negative consensus (8), fearful re-
actions (17), and uncertainty and confusion (14). Negative emotion
includes labels like “sadness,” “anger,” or “annoyment,” negative
social interaction “ignoring” or “distancing,” and negative consensus
“disagreement” or “unwillingness.” The theme Positive Expressions
includes the labels positive social interaction (59), positive emotion (6),
and positive consensus (48). Positive social interaction expressions in-
clude labels like “approaching,” “available,” or “submissive,” positive
emotions “empathy” or “happiness”, and positive consensus “accep-
tance,” “agreement,” or “confirmation.” Lastly, the theme Interactive
Expressions includes the two labels active social interaction (7) and
indicative social interaction (35). Active social interactions include
labels like “dancing” or ‘laughing” and indicative social interactions
like “commanding,” “taking,” or “pointing.”

We calculated 𝑄𝑅𝐴 between each expression and the goals of
the referents, i.e., the ratio between the matching and not matching
labeled expressions, displaying the results in Table 5. For instance,
expression E01, which was created for referents R1 and R2, achieved
a 75% qualitative response accuracy, indicating that 75% of labels
matched the goals of the original referents. Most participants ac-
curately identified expressions related to visual observation (R1,
R3) and attentive listening (R4, R5, R6). However, expressions for
observing an unknown sound (R2) were correctly described by
only 3% and 7% of participants, indicating poor suitability for ex-
pressing interest in sound. For the control referent expressing fear
(R7), neither of the created expressions was correctly identified by
most participants. Conversely, one expression (E12) for signaling
disinterest performed well, while another (E13) did not.

Curiosity and Perception Questionnaire. The questionnaire results
are shown in Figure 6. Normality tests using the Shapiro-Wilk test
revealed that none of the ten questions (five on user perception and
impact, five on curiosity) followed a normal distribution (𝑝 < 0.01).
Therefore, we used Kruskal-Wallis tests to detect significant effects
among the expressions. We observed significant effects for all five
curiosity-related questions and three out of five questions related to
perception. Subsequently, we conducted Mann-Whitney U post hoc
tests to determine the significant differences between expressions,
which are presented in Figure 7.

Visual Exploration: For expressions E01, E02, and E03 (arising
from R1 and R3), we found no significant difference for attentive,
explorative, and understandable. We found E02 to be significantly
more engaged and information-seeking than E01. We found E03 to
be significantly more curious and effective than E01. And lastly, we
found E02 and E03 to be significantly more noticeable than E01.

Auditory Exploration: For E04, E05, and E06 (arising from
R2), we found no significant difference for engaged, attentive, ex-
plorative, information-seeking, understandable, and effective. We
found E06 to be significantly more curious and noticeable than E04.
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Figure 5: Distribution of groups of different interpretations for each expression. We striped non-matching expressions, c.f.,
Table 5. An expression is matching if the majority of users in the second study phase understood the originally, in the first
study phase, planned intent of the expression.

Listening Attention: For E07, E08, and E09 (arising from R4,
R5, and R6), we found no significant difference for engaged, at-
tentive, curious, or noticeable. We found E08 to be significantly
more information-seeking than E07, and E09 significantly more
explorative and information-seeking than E07. We found E09 to be
significantly less understandable and effective than E07 and E08.

Scared: For E10 and E11 (arising from R7), we found no sig-
nificant differences for engaged, attentive, information-seeking,
understandable, and effective. We found E11 to be significantly
more curious and noticeable than E10.

Auditory Disengagement: For E12 and E13 (arising from R8),
we found no significant differences for attentive, explorative, infor-
mation seeking, and curious. We found E13 to be significantly less
engaged, understandable, effective, and noticeable than E12.

5 Discussion
We described an approach to create human-understandable robot
expressions via two phases. We then showed the applicability of
this approach through an example study to create curious robotic
expressions In the following, we discuss this approach.

5.1 Towards a Robust Approach for Expression
Elicitation and Validation

Traditionally, developing expressive expressions for robots in HRI
required laborious processes, including creating expressions from
scratch, relying on domain experts, or using motion data of human
users. However, these methods often lacked efficiency and were not
suitable for all HRI scenarios. Recognizing the growing importance
of HRI research, we set out to establish a rapid and validated method
for generating expressive robot expressions, addressing the need for

efficiency and flexibility. In designing our approach, we established
five key goals (see Section 3.2).

(1) Universal: While we showed that our approach works on a
non-anthropomorphic robot arm through our example study,
we could not prove that our approach works for any robot.
However, a key strength of our example study was allowing
participants to directly move the robot, and future studies
should continue to prioritize ease of expression creation. Par-
ticipants can manipulate the robot by hand, with tools, or by
instructing a conductor, depending on the robot used. Thus,
we hypothesize that our method is also applicable to robots
where easy manipulation is possible, which needs further
investigation in future work. Regardless of the method, the
expression generation process should be iterative, allowing
users to refine expressions until they are satisfied.

(2) Generalizable: Our approach was designed to be general-
izable by using flexible referents, allowing participants to
create expressions for any topic. This topic-agnostic method
is adaptable to different HRI contexts without relying on
specific datasets or subject knowledge, making it applicable
across various robots and scenarios. The use of referents en-
sures consistency while allowing for diverse, transferable
expressions that can be compared across studies.

(3) Accessible: Our approach intentionally excluded the need
for external datasets or domain experts, ensuring accessibil-
ity to all researchers. However, experts can still be involved in
the expression elicitation phase. By focusing on low-resource
requirements and streamlined processes, accessible meth-
ods democratize participation in HRI research and facilitate
reproducibility across varied contexts.

(4) Comparable: By employing taxonomies and𝑄𝑅𝐴, we aimed
to provide a clear description of the created expressions
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Figure 6: Boxplots of the ten questions we asked for every expression. The top row displays the results for the curiosity questions.
The bottom row displays the assessment of perception and impact questions. The scales for intrusive and disturbing are
reversed such that 100 always means good.
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and their comprehensibility, making it possible to compare
results across studies and generalize findings.

(5) Validated: To confirm the understandability of the expres-
sions, we propose conducting an online study with a large
participant pool. This approach ensures broad feedback, help-
ing confirm that the created expressions are comprehensible
to a diverse audience.

In summary, our approach successfully met all five goals, offering
a versatile and efficient method for generating robot expressions in
HRI research.

5.2 Our Approach Successfully Uses Human
Creativity to Design Understandable
Expressions

For the expression creation part, we used ideas from gesture elici-
tation studies and combined them with enactment. We found that
this second part got participants in our example study into the
correct thinking mood in which they would express the different
referents and, thus, how they would want the robot to express
these things. This worked well in our case, even though we chose
a non-humanoid robot, using the difficult part of the spectrum of
user-created expressions as there is no direct 1-to-1 mapping be-
tween their own expressions and how the robot should express that,
and some abstraction is needed. We propose that as this approach
worked for a non-humanoid robot, using this approach for a robot
with more humanoid or animalistic traits will likely work, as users
can use more previous knowledge to create expressions.

We aimed to create expressions in the domain of curiosity and
successfully created six expressions. With the knowledge of which
core ideas from expressions lead to participants assuming the robot
expresses something designers can now take these ideas and design
choreographies for robots. In our expression validation phase, we
did not give the users any context about the robot’s current rou-
tine. However, as human expressions are interpreted differently,
depending on the context [67, 75], it is important to note that also
different interpretations of the same expression should be labeled
as correctly understood. By giving users more context, the potential
interpretation of the robot’s expression can also be limited, which
might be desirable or undesirable.

5.3 Generalizablility Comes Across Studies Not
Within

Through our example study, we found that our approach works for
non-humanoid robot arms. Furthermore, a similar approach has
already been used to create understandable drone gestures [9, 34].
With our proposed key goals for our approach, we aimed to create
a method that future work can apply to various robots. However,
showing how generalizable our approach is can only be done by
subsequent studies, using this approach to create expressions for
different robots, different modalities, different contexts, and in dif-
ferent topic domains. Many now-established HCI methods have
gone through this iterative process of getting improved and also
verified over time through the HCI community, e.g., general ges-
ture elicitation studies [111], the NASA-TLX questionnaire [40, 41],
or ART Anovas [110]. We aimed to create a generally applicable

approach to create human-created robotic expressions and validate
their understandability in a rapid way, as many HRI studies need
robotic behavior. We also note that our approach only generates
verified general expressions that are understandable. In contrast to
other works, we do not focus on the design process of these ges-
tures, which focus on generating “crisp” looking expressions [57].
We propose that this should be done by designers when applied
afterward.

5.4 How and Who Does Our Approach Help
Non-verbal communication holds immense importance in both
human-human interactions and human-robot interactions. Implic-
itly conveying one’s current state and needs through non-verbal
cues is particularly valuable in human-robot communication be-
cause it seamlessly integrates with ongoing tasks, unlike intrusive
notifications from smart devices, which can disrupt the user’s fo-
cus. With robots, we have the unique opportunity to redefine how
we interact with advanced technical systems capable of providing
comprehensive support in our daily lives. Achieving seamless and
effective communication is pivotal for robots to fulfill their potential
as supportive companions.

However, traditional methods of developing non-verbal com-
munication for robots have limitations and are mostly data-driven.
Here, we want to add the the options of how future robot expres-
sions can be created through a more human-centered approach. Our
approach is usable with both expert and non-expert users for the
expression elicitation phase, depending on the domain for which
the expressions should be created for. Through the validation phase
with a large-scale sample of non-experts, it becomes clear which
expressions will be understood by the general population.

5.5 Insights from our Example Study
In the following, we will discuss our findings from our example
study to create human-understandable robotic expressions express-
ing curiosity.

5.5.1 People Elicit Convergent Expressions. In our expression elic-
itation phase, we observed that participants often shared similar
ideas for expressing various referents. Out of 128 recorded expres-
sions, we identified 13 unique expressions, averaging 9.84 expres-
sions per type (𝑆𝐷 = 5.35). This similarity highlights that a large
participant pool may not be necessary due to the low variation
in human expressions. Providing similar referents allowed partic-
ipants to be creative while addressing comparable ideas. Human
expressions tend to exhibit similarities across various situations,
with contextual cues playing a vital role in interpreting the intended
meaning of an expression. This contextual influence is further evi-
denced by the consistently higher scores for expressions E01, E02,
and E03 across all measurements in the second phase, as these
expressions were the only ones framed within the context of an
object.

5.5.2 Human-Understandable Curious Expressions for Visual Ex-
ploration and Listening Attention. Our study revealed that of the
13 human-created expressions, seven were well understood by par-
ticipants, while six were not. This indicates that we successfully
created at least one well-understood and, thus, effective expression
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for six of the eight referents (five of six curiosity referents). We
can now compare these effective expressions with the quantitative
questionnaire results.

For referents R1 and R3, expressions E01, E02, and E03, which
had high qualitative response accuracies, were all suitable for con-
veying visual interest. However, E03 had the highest accuracy of
94%, making it the best match for R1 and R3. It combines both
continuous and discrete flow, distinguishing it from E01 and E02,
which use only one flow type. For referents R4, R5, and R6, ex-
pressions E07, E08, and E09 were applicable. E07 had the highest
accuracy (96% for R4 and R5, 100% for R6), while E08 and E09 were
deemed significantly more information-seeking than E07, though
E09 was less understandable. E08, with an 88% accuracy, and E07
are both suitable for these referents. Given the similarity in their
movements (nodding with varying body involvement), these results
align with expectations. Referent R8 had two matching expressions
(E12 and E13). E12 had a higher qualitative response accuracy (73%)
compared to E13 (21%) and was significantly more engaged, un-
derstandable, effective, and noticeable. Consequently, E12 emerged
as the superior choice for expressing robot rejection of a person’s
statement. Thus, head shaking is more understandable than turning
the body away.

This shows that we successfully created human-understandable
expressions for visual curiosity (E1, E2, E3) and conversational
curiosity (E07, E08, E09). These expressions effectively conveyed
the robot’s interest in visual objects and attentiveness to spoken
conversation. However, auditory curiosity expressions faced chal-
lenges and were poorly understood by participants. The effective
visual curiosity expressions involved the robot approaching the
object, inspecting it from various angles, and using its entire body
for movement. In contrast, effective listening attention expressions
primarily featured nodding with the robot’s end-effector, while
another expression involved body movement, shifting from fac-
ing away to facing and approaching the users. We attribute the
success of these expressions to (1) the contextual relevance of the
target object and (2) the clarity of expressions associated with listen-
ing attention, such as nodding. Auditory exploration expressions
lacked these advantageous properties, contributing to their lower
participant comprehension rates.

5.5.3 Obvious Expressions are Understandable and Context Matters.
Our study demonstrated that nodding and head shaking effectively
signal interactions with the robot, whether inviting or rejecting
conversations. These findings align with human behavior, where a
limited set of expressions is employed to convey various emotional
states [5], emphasizing the importance of familiar and comprehen-
sible expressions. Additionally, we found that even with a non-
humanoid robot, participants generated human-like expressions,
and visual curiosity gestures—such as examining objects—were
well understood. Expressions indicating attentiveness to spoken
conversation also led to high participant comprehension.

However, the study revealed challenges in participants’ under-
standing of auditory curiosity expressions. We attributed this confu-
sion to the absence of context in the gestures. By filming the robot’s
expressions without providing contextual information, participants
struggled to interpret the intended meaning behind auditory curios-
ity expressions. This highlights the significance of incorporating

context into expressions, which can substantially enhance their
interpretability in human-robot interactions.

5.6 Limitations and Legacy Bias
In our example study, we intentionally refrained from giving partici-
pants too much context in the expression creation process. Here, we
aimed to maximize generalizability and avoid priming participants.
However, we observed that expressions tied to direct contextual
cues (e.g., visual exploration vs. auditory exploration) tended to
perform better (see Figure 6). Giving participants more context and
limitations in the expression creation process might increase the
robustness of the resulting expressions. However, this then leads to
more specific expressions, taking away some generalizability. Thus,
this is a trade-off that each researcher needs to evaluate for their
specific context when applying our approach.

We tested our approach in one example study, creating expres-
sions for the trait curiosity. While we created our five goals of the
approach to ensure generalizability, we, for now, can not prove how
applicable it is for other robots. Our approach allows future work
to create expressions for other traits and robots, showing whether
it is generalizable over time.

The issue of “legacy bias” in gesture elicitation studies, as high-
lighted by Morris et al. [70], raises a valid point. It suggests that
when participants are asked to create gestures for novel interaction
capabilities, well-known and familiar gestures tend to emerge as
the preferred choices. For instance, when prompted to create a
gesture for zooming, many participants might instinctively choose
a pinching motion, reflecting their familiarity with touchscreens.
While this legacy bias might initially seem limiting, it does not nec-
essarily have to be viewed as a negative aspect. Human-computer
interaction has evolved over decades, and users have become accus-
tomed to certain interaction concepts. Requiring users to relearn
entirely new ways of interacting with technical devices each time
a novel interaction capability emerges could be cumbersome and
counterproductive. In this context, our method, which prioritizes
well-known and obvious expressions, can be seen as a valuable tool.
It allows researchers to systematically identify and leverage the
most common and widely understood non-verbal communication
cues. These cues are already ingrained in users’ minds due to their
experience with various technical devices. Thus, our approach en-
ables researchers to tap into this existing knowledge base and build
upon well-established interaction concepts, making the transition
to new technology more seamless and intuitive for users.

6 Conclusion
In this work, we presented an approach to elicit and generate
human-understandable robot expressions. This helps to create bet-
ter human-robot interaction as a better understanding of robots’
intentions leads to more seamless collaboration. Our approach uses
ideas from gesture elicitation studies, human creativity and in-
tuition, and wide verification. We showed our approach with an
example case of creating understandable, curious robot expressions
with a non-humanoid robot. By employing our approach, future
work can show whether our approach is also applicable to different
robot types. We have successfully created expressions to deliver
five out of six referents correctly. We found that robot expressions,
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in contrast to interaction gestures, do not have to be distinctly dif-
ferent from each other, and the same expressions can be the best
way to convey different robot states. Through our study, we found
that familiar expressions tend to be understood better than novel
expressions. With this approach, we aim to support future work for
HRI; through a way to easily and rapidly fabricate understandable
robotic expressions.

7 Open Science
We encourage readers to review, reproduce, and extend our results
and analysis methods. To achieve this goal, we make available our
coding process and taxonomy classification for the expression elici-
tation phase and study results, material, coding process, referent
matching, and grouping for the expression verification phase at
this link https://osf.io/3sywc.
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