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In the future, robots will be a ubiquitous part of our daily interactions. In contrast to home assistants, robots will assist us by responding
to questions and requests and interacting with the environment and humans directly. For this and with the help of recent advancements
in AI, we propose shifting from passive to active robots, which can communicate with humans to understand how and when they
should perform supportive tasks, which will be especially supportive in collaborative settings. In this paper, we envision two different
approaches to how this can be implemented. (1) Rule-based approaches where the dialogue is implemented as a state machine and
the conversation procedure is static and predictable. (2) LLM-based approaches, which can dynamically adapt to any situation and
ambiguous human input. We compare these two ideas of how robots can first detect the state in which a human is and how they can
engage in conversations, and then discuss the advantages and disadvantages of these approaches regarding trust, usability, performance,
user agency, and perception of the robot.

CCS Concepts: • Human-centered computing → Human computer interaction (HCI).

Additional Key Words and Phrases: human computer interaction, robot, human-robot interaction, voice user interface

1 INTRODUCTION

Robots have undergone major technological advancements. With this, robots are developing from autonomous agents
toward collaborative companions. As such, robots can now perform various tasks to support humans daily. However, a
key component in collaborative settings is fluent communication. In human-human scenarios, we often need to ask
questions about how a task should be performed or whether it is a good time to help. While this is often intuitive in
human-human scenarios depending on how close the relationship between the users is, in human-robot interaction
(HRI), it is currently unclear how to best enable this kind of communication. Current technical devices often react
predictably to human input as we have learned their interaction modalities. Today, most voice assistants are passive
agents and only react to user requests through a wake word. Here, most communication models are rule-based, making
the interaction flow static and repeatable. This requires users to learn to communicate with these systems to get their
desired results correctly. On the one hand, this makes learning how to interact with these systems simple. On the other
hand, this might lead to frustration when the system can not dynamically react to user requests. Large-language models
(LLMs) have recently drastically changed the possibilities of interacting with technical systems. Due to their potential to
“understand” every human request to a certain extent, they enable more fluid interaction. Thus, LLMs offer to enhance
the HRI and overcome the narrow rule-based responses of traditional voice user interfaces in robots.

When envisioning future agents to support users in their daily lives, we see a shift from passive agents to active
agents interacting directly with the environment and users. Active engagement requires more communication so these
agents do not disturb users but help users. Furthermore, users would also prefer proactive voice agents [32]. In contrast
to traditional voice agents, robots also offer the possibility of expressions or non-verbal communication in dialogues.
User agency plays an important role here. We do not envision agents just to be servants, which do all tasks for humans,
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but a collaborative workflow, leveraging users’ desire to still perform certain tasks but getting support when needed.
This requires the agents to ask questions and start conversations in certain situations actively [16]. However, we do not
want agents to guide us in every step, as this would take away user agency. Thus, it is important to perform this active
engagement gracefully, e.g., through the use of humor [36]. The current advancements in the use of LLMs enable robots
to grasp the state of the environment in an accurate and detailed way [1, 4, 29]. Wang et al. [35] created a system that
can intake information from various sources and output different sequences of atomic actions to fulfill user requests.
This enables agents to react to any situation and not only situations that can be classified based on training data.

Trust plays a vital role in HRI. Factors like reliability, competence, transparency, and predictability all foster trust in
HRI [3, 13, 24], and transparent communication of capabilities and limitations play a significant role in building trust.
Understanding and enhancing trust in HRI is essential for improving communication effectiveness and user acceptance
in various contexts and increases the use of robots [23]. User agency is another crucial aspect of HRI. Users should
be given a sense of control and autonomy in their interactions with robots [10]. Robots that facilitate user agency by
providing options for input, decision-making, and task customization can enhance user satisfaction and collaboration.

In this work, we compare traditional rule-based approaches against LLM-based approaches. We discuss their
advantages and disadvantages and how they affect user agency and trust. Then, we propose a study design on how to
investigate the effect of both approaches in terms of trust in the agent, usability, fluidity, performance, and perception.

2 COMPARISSON

These two approaches, described in the following, reflect the two outer points of a continuum, as LLM-based approaches
can be fine-tuned, which leads to a hybrid approach.

2.1 Rule-Based Approach

The main part of a voice user interface circle is dialog management. Here, the detected intents in a user query get
processed, and the agent generates a fitting response based on the response and state of the dialogue [7, 16, 27]. Often,
interaction with voice assistants is task-oriented [6], and we envision goal-orientated interaction.

Advantages: Transparency: Rule-based systems are usually transparent, as their functionality is based on predefined
rules. Transparency issues only occur for voice assistants of large companies, which might be interested in personal user
data [11, 19]. Consistency and Control: As the responses are created based on rules, they are predictable and internally
consistent, and both users and developers have a lot of control over them.

Disadvantages: Limited flexibility: Rule-based systems are inherently limited by exactly those rules. When a user
query is outside of scope, these systems can not positively react to those queries. Lack of adaptability: Rule-based
systems are usually implemented with one certain personality and can usually not adapt. Hard to scale: Creating a
rule-based system that scales up to react to every single user intent is not feasible, as the option space for those rules is
way too high. Maintaining a working rule set in a changing environment adds to this problem.

2.2 Dynamic LLM-based Approach

LLM-based voice assistants represent a significant advancement over their rule-based counterparts, particularly in
the domain of dialog management. Like rule-based systems, LLM-based assistants analyze user queries to discern
intents. However, they employ language understanding through large general pre-trained word embeddings to generate
contextually appropriate responses. Furthermore, as the trend shifts towards goal-oriented interaction between robots
and humans, LLM-based assistants are pivotal in facilitating seamless outcome-driven communication.
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Advantages: Natural language understanding: Due to the largely trained models, LLMs perform great at being able to
respond to any user query, even if outside of the original scope, giving LLM-powered voice assistants richer interaction
patterns [18]. Adaptability: LLMs are still constantly improved and trained and can also be trained locally to a specific
scenario, allowing them to adapt to user preferences [26]. Broad coverage: LLMs enable agents to respond to user queries
that are completely out of the original context of the user agent.

Disadvantages: Unpredictable: LLMs are often a black box, making it hard to understand how certain decisions are
made. Unexpected responses: Due to their nature of just predicting the most probable next word in each sentence, the
output of LLMs can sometimes be unexpected [26]. Data dependency: This is more of an issue for LLMs, which should
work in specific contexts. LLMs need a large amount of data to generate good embeddings. Bias: If there were bias in
the training data, there would be bias in the output [8].

2.3 Context Considerations

The effectiveness of rule-based and LLM-based methods depends on task type, user group, and environment. Rule-based
approaches excel in structured tasks like commands, while LLM-based methods thrive in dynamic conversational
interactions [17]. While novice user groups might prefer the predictability of rule-based systems, the dynamic nature
of LLM-based systems might also be advantageous for not experienced users, as LLMs are great at extrapolating the
context from only partly given information. While more technical affine user groups might prefer the dynamic behavior
of LLM-based systems at first, oftentimes, expert users want shortcuts and interactions to be efficient [9]. LLM-based
systems are great in complex environments, as they can leverage context to generate a fitting response [28, 35].

2.4 Future Work

We introduced the need for active assistant robot conversational agents and compared rule-based and LLM-based
approaches by reviewing their advantages and disadvantages. While LLM-based methods are way more capable,
especially in terms of responding to unexpected user queries, it is currently unclear how this affects trust and user
agency. To solve this, we propose to conduct a user study with a robotic system comparing a rule-based system and an
LLM-based system for the conversational agent. We propose to measure trust [25], user preference, user agency [20],
usability [5], interaction fluency [22], and general perception of the robot [2].
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